10-TAP, TTL-INTERFACED
 FIXED DELAY LINE
 (SERIES DDU224F)

FEATURES

- Ten equally spaced outputs
- Very narrow device (SIP package)
- Stackable for PC board economy
- Input \& outputs fully TTL interfaced \& buffered
- $10 \mathrm{~T}^{2} \mathrm{~L}$ fan-out capability

PACKAGES

VCC N/C IN T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 GND

FUNCTIONAL DESCRIPTION

The DDU224F-series device is a 10 -tap digitally buffered delay line. The signal input (IN) is reproduced at the outputs (T1-T10), shifted in time by an amount determined by the device dash number. The nominal tap-totap delay increment is given by $1 / 10$ of the dash number. For dash numbers less than 50, the total delay of the line is measured from T1 to T 10 , with the nominal value given by 9 times the increment. The inherent delay from IN to T 1 is nominally 3.5 ns. For dash numbers greater than or equal to 50 , the total delay of the line is measured from IN to T 10 , with the nominal value given by the dash number.

SERIES SPECIFICATIONS

- Minimum input pulse width: 20% of total delay
- Output rise time: 2ns typical
- Supply voltage: $5 \mathrm{VDC} \pm 5 \%$
- Supply current: $\mathrm{I}_{\mathrm{CCL}}=50 \mathrm{ma}$ typical

$$
\mathrm{I}_{\mathrm{CCH}}=15 \mathrm{ma} \text { typical }
$$

- Operating temperature: 0° to $70^{\circ} \mathrm{C}$
- Temp. coefficient of total delay: $100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$

PIN DESCRIPTIONS

IN Signal Input
T1-T10 Tap Outputs
VCC +5 Volts
GND Ground

DASH NUMBER SPECIFICATIONS

Part Number	Total Delay (ns)	Delay Per Tap (ns)
DDU224F-10	$9 \pm 2.0^{*}$	1.0 ± 0.5
DDU224F-20	$18 \pm 2.0^{*}$	2.0 ± 1.0
DDU224F-25	$22.5 \pm 2.0^{*}$	2.5 ± 1.0
DDU224F-50	50 ± 2.5	5.0 ± 2.0
DDU224F-100	100 ± 5.0	10.0 ± 3.0
DDU224F-150	150 ± 7.5	15.0 ± 3.0
DDU224F-200	200 ± 10.0	20.0 ± 3.0
DDU224F-250	250 ± 12.5	25.0 ± 3.0
DDU224F-300	300 ± 15.0	30.0 ± 3.0
DDU224F-400	400 ± 20.0	40.0 ± 4.0
DDU224F-500	500 ± 25.0	50.0 ± 5.0

* Total delay is referenced to first tap output Input to first tap $=\mathbf{3 . 5 n s} \pm \mathbf{1 n s}$

NOTE: Any dash number between 10 and 500 not shown is also available.

APPLICATION NOTES

HIGH FREQUENCY RESPONSE

The DDU224F tolerances are guaranteed for input pulse widths and periods greater than those specified in the test conditions. Although the device will function properly for pulse widths as small as 20% of the total delay and periods as small as 40% of the total delay (for a symmetric input), the delays may deviate from their values at low frequency. However, for a given input condition, the deviation will be repeatable from pulse to pulse. Contact technical support at Data

Delay Devices if your application requires device testing at a specific input condition.

POWER SUPPLY BYPASSING

The DDU224F relies on a stable power supply to produce repeatable delays within the stated tolerances. A 0.1 uf capacitor from VCC to GND, located as close as possible to the VCC pin, is recommended. A wide VCC trace and a clean ground plane should be used.

Functional diagram for dash numbers < 50

Functional diagram for dash numbers $>=\mathbf{5 0}$

DEVICE SPECIFICATIONS

TABLE 1: ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
DC Supply Voltage	V_{CC}	-0.3	7.0	V	
Input Pin Voltage	$\mathrm{V}_{\text {IN }}$	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V	
Storage Temperature	$\mathrm{T}_{\text {STRG }}$	-55	150	C	
Lead Temperature	$\mathrm{T}_{\text {LEAD }}$		300	C	10 sec

TABLE 2: DC ELECTRICAL CHARACTERISTICS
(0C to $70 \mathrm{C}, 4.75 \mathrm{~V}$ to 5.25 V)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
High Level Output Voltage	V_{OH}	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$ $\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$
Low Level Output Voltage	V_{OL}		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$ $\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$
High Level Output Current	I_{OH}			-1.0	mA	
Low Level Output Current	I_{OL}			20.0	mA	
High Level Input Voltage	V_{IH}	2.0			V	
Low Level Input Voltage	V_{IL}			0.8	V	
Input Clamp Voltage	V_{IK}			-1.2	V	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$
Input Current at Maximum Input Voltage	$\mathrm{I}_{\mathrm{IHH}}$			0.1	mA	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$
High Level Input Current	I_{IH}			20	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$
Low Level Input Current	I_{IL}			-0.6	mA	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$
Short-circuit Output Current	I_{OS}	-60		-150	mA	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}$
Output High Fan-out				25	Unit	
Output Low Fan-out				12.5	Load	

PACKAGE DIMENSIONS

DELAY LINE AUTOMATED TESTING

TEST CONDITIONS

INPUT:
Ambient Temperature: $25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$
Supply Voltage (Vcc): $5.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$
Input Pulse:
High $=3.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$
Low $=0.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$
Source Impedance: $\quad 50 \Omega$ Max.
Rise/Fall Time: $\quad 3.0 \mathrm{~ns}$ Max. (measured between 0.6 V and 2.4 V)
$P W_{\mathbb{I N}}=1.5 \times$ Total Delay
$\mathrm{PER}_{\text {IN }}=10 \times$ Total Delay

Pulse Width:
Period:

OUTPUT:
Load:
$\mathrm{C}_{\text {load }}$:
1 FAST-TTL Gate
Threshold: 1.5 V (Rising \& Falling)

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing

