

SAW Components

Data Sheet B3892

SAW Components Low-Loss Filter

B3892 248,6 MHz

Data Sheet

Features

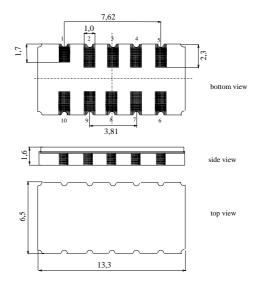
- Low-loss IF filter for GSM-EDGE base station
- Temperature stable
- Balanced or unbalanced operation possible
- Ceramic SMD package

Terminals

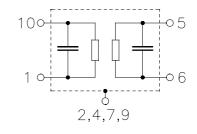
• Gold plated

Pin configuration

1


6 5

10


3, 8

2, 4, 7, 9

Ceramic package DCC12A

Dimensions in mm, approx. weight 0,4 g

TypeOrdering codeMarking and Package
according toPacking
according toB3892B39251-B3892-H510C61157-A7-A94F61074-V8163-Z000

Electrostatic Sensitive Device (ESD)

Input

Ground

Input ground Output

Output ground

Case ground

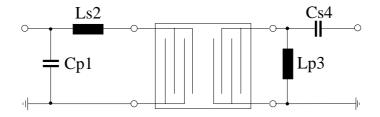
Maximum ratings

Operable temperature range	Т	-30 / +80	°C	
Storage temperature range	T _{stg}	-40 / +85	°C	
DC voltage	$V_{\rm DC}$	0	V	
Source power	$P_{\rm s}^{-1}$	10	dBm	
Source power	Ps	20	dBm	t <= 100 hours

2

SAW Components						B3892
Low-Loss Filter					248,	,6 MHz
Data Sheet						
Characteristics						
Operating temperature:			C to 75°C			
Terminating source impedanc				hing netwoi		
Terminating load impedance:	Z_{L}	$= 50 \Omega$	and matc	hing netwoi	'K	
			min.	typ.	max.	
Nominal frequency		f _N	—	248,6	_	MHz
Minimum insertion attenuat	ion	α_{min}			1	
(including losses in matching	network)		—	4,7	6,0	dB
Passband width						
	$\alpha_{rel} \leq$ 3,0 dB	<i>B</i> _{3,0dB}	—	430	—	kHz
Amplitude ripple (p-p)		Δα			1	
	<i>f</i> _N ± 100,0 kHz		_	0,5	1,0	dB
Group delay ripple (p-p)		Δτ			1	
	<i>f</i> _N ± 100,0 kHz		—	0,6	0,7	μs
Relative attenuation (relative	e to α_{min})	α_{rel}			1	
<i>f</i> _N ± 0,33 MHz …			12	15		dB
	$f_{\sf N} \pm 0,80 \; {\sf MHz}$		25	37		dB
	<i>f</i> _N ± 1,60 MHz		45	50		dB
	<i>f</i> _N - 29,20 MHz		55	70		dB
<i>f</i> _N - 29,20 MHz			48	55		dB
<i>f</i> _N + 1,60 MHz	<i>t</i> _N + 100,0 MHz		48	60		dB
@ f _N + 22,80 MHz			55	60	—	dB
@ f _N + 52,00 MHz			55	65	—	dB
@ f _N + 74,80 MHz			55	65		dB
@ f _N + 104,0 MHz			55	65		dB
@ f _N + 126	6,8 MHz		55	65	—	dB
Temperature coefficient of f	requency ¹⁾	TC _f		-0,036		ppm/K
Frequency inversion point	. equoiley			35		°C
		T_0				

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$



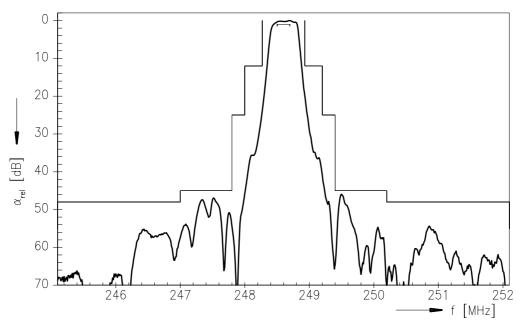
SAW Components	B3892
Low-Loss Filter	248,6 MHz

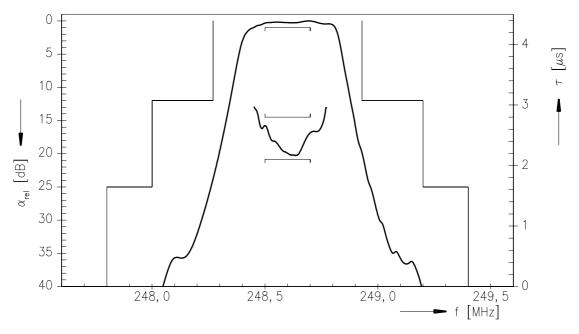
Data Sheet

Matching network to 50 $\!\Omega$

(Element values depend upon PCB layout)

C_{p1}	= 16 pF	L _{p3} =	= 15 nH
L_{s2}	= 39 nH	C _{s4} =	= 15 pF


4


SAW Components	B3892
Low-Loss Filter	248,6 MHz

Data Sheet

Normalized transfer function:

Normalized transfer function (pass band):

Jul 16, 2004

5

SAW Components	B3892
Low-Loss Filter	248,6 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2004. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

