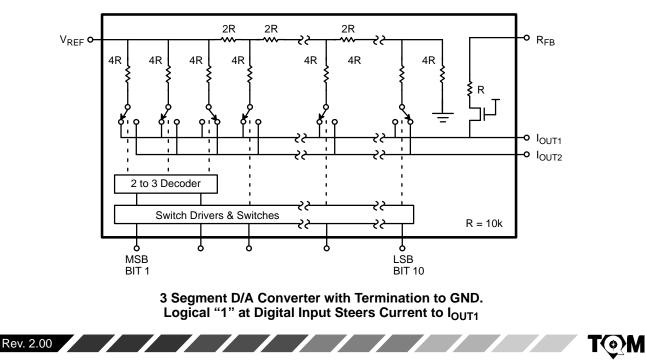


FEATURES

- Full Four-Quadrant Multiplying DAC
- Guaranteed Monotonic over Temperature
- Non-Linearity: +1/2 LSB Achieved without Trimming
- Ultra Stable: 0.2 ppm/°C Max Linearity Tempco
- 2 ppm/°C Max Gain Error Tempco
- Low Output Capacitance
- Low Sensitivity to Amplifier Offset 330 μ V/mV
- Low Glitch Energy
- Low Feedthrough Error
- TTL/5 V CMOS Compatible

- Latch-Up Free
- Improved Replacement for AD7533, AD7520
- Low Cost

APPLICATIONS


- Digitally Controlled Attenuators
- Programmable Gain Amplifiers
- Function Generation
- Linear Automatic Gain Control

GENERAL DESCRIPTION

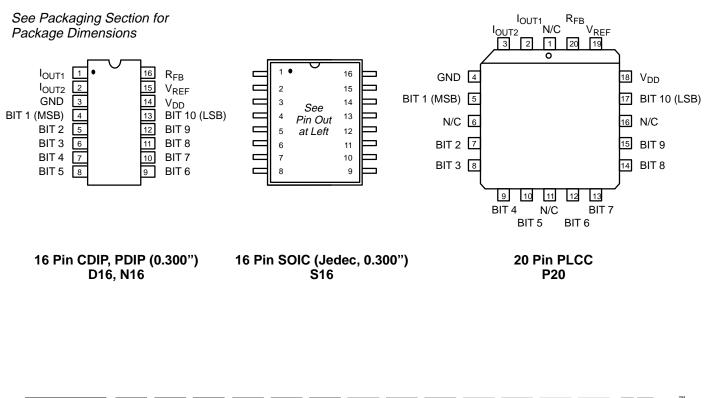
The MP7633 is pin and functionally equivalent to industry's standard AD7533, AD7520 and AD7530. The MP7633 is recommended when lower output capacitance is required. The MP7633 incorporates a unique decoding technique yielding excellent accuracy and stability (0.2 ppm/°C linearity drift and 2

ppm/°C scale factor drift) over temperature and time.

The 2-3 bit decoding architecture of the MP7633 results in low output capacitances of 52/26pF at I_{OUT1} and 13/45pF at I_{OUT2}, low sensitivity to output amplifier offset of 330 μV per millivolt offset, eliminating the need for trim pots in many applications.

SIMPLIFIED BLOCK DIAGRAM

T(•)M


ORDERING INFORMATION

Package Type	Temperature Range	Part No.	INL (LSB)	DNL (LSB)	Gain Error (% FSR)
Plastic Dip	–40 to +85°C	MP7633JN	<u>+</u> 2	<u>+</u> 2	<u>+</u> 0.4
Plastic Dip	–40 to +85°C	MP7633KN	<u>+</u> 1	<u>+</u> 1	<u>+</u> 0.4
Plastic Dip	–40 to +85°C	MP7633LN	<u>+</u> 1/2	<u>+</u> 1/2	<u>+</u> 0.4
SOIC	–40 to +85°C	MP7633JS	<u>+</u> 2	<u>+</u> 2	<u>+</u> 0.4
SOIC	–40 to +85°C	MP7633KS	<u>+</u> 1	<u>+</u> 1	<u>+</u> 0.4
SOIC	–40 to +85°C	MP7633LS	<u>+</u> 1/2	<u>+</u> 1/2	<u>+</u> 0.4
PLCC	–40 to +85°C	MP7633JP	<u>+</u> 2	<u>+</u> 2	<u>+</u> 0.4
PLCC	–40 to +85°C	MP7633KP	<u>+</u> 1	<u>+</u> 1	<u>+</u> 0.4
PLCC	–40 to +85°C	MP7633LP	<u>+</u> 1/2	<u>+</u> 1/2	<u>+</u> 0.4
Ceramic Dip	–40 to +85°C	MP7633AD	<u>+</u> 2	<u>+</u> 2	<u>+</u> 0.4
Ceramic Dip	–40 to +85°C	MP7633BD	<u>+</u> 1	<u>+</u> 1	<u>+</u> 0.4
Ceramic Dip	–40 to +85°C	MP7633CD	<u>+</u> 1/2	<u>+</u> 1/2	<u>+</u> 0.4
Ceramic Dip	–55 to +125°C	MP7633SD*	<u>+</u> 2	<u>+</u> 2	<u>+</u> 0.4
Ceramic Dip	–55 to +125°C	MP7633TD*	<u>+</u> 1	<u>+</u> 1	<u>+</u> 0.4
Ceramic Dip	–55 to +125°C	MP7633UD*	<u>+</u> 1/2	<u>+</u> 1/2	<u>+</u> 0.4

*Contact factory for non-compliant military processing

PIN CONFIGURATIONS

Rev. 2.00

2

/ / / / /

PIN OUT DEFINITIONS

16 Pin CDIP, PDIP, SOIC

PIN NO.	NAME	DESCRIPTION
1	I _{OUT1}	Current Output 1
2	I _{OUT2}	Current Output 2
3	GND	Ground
4	BIT 1	Data Input Bit 1 (MSB)
5	BIT 2	Data Input Bit 2
6	BIT 3	Data Input Bit 3
7	BIT 4	Data Input Bit 4
8	BIT 5	Data Input Bit 5
9	BIT 6	Data Input Bit 6
10	BIT 7	Data Input Bit 7
11	BIT 8	Data Input Bit 8
12	BIT 9	Data Input Bit 9
13	BIT 10	Data Input Bit 10 (LSB)
14	V _{DD}	Positive Power Supply
15	V _{REF}	Reference Input Voltage
16	R _{FB}	Internal Feedback Resistor

20 Pin PLCC

PIN NO.	NAME	DESCRIPTION	
1	N/C	No Connection	
2	I _{OUT1}	Current Output 1	
3	I _{OUT2}	Current Output 2	
4	GND	Ground	
5	BIT 1	Data Input Bit 1 (MSB)	
6	N/C	No Connection	
7	BIT 2	Data Input Bit 2	
8	BIT 3	Data Input Bit 3	
9	BIT 4	Data Input Bit 4	
10	BIT 5	Data Input Bit 5	
11	N/C	No Connection	
12	BIT 6	Data Input Bit 6	
13	BIT 7	Data Input Bit 7	
14	BIT 8	Data Input Bit 8	
15	BIT 9	Data Input Bit 9	
16	N/C	No Connection	
17	BIT 10	Data Input Bit 10 (LSB)	
18	V _{DD}	Positive Power Supply	
19	V _{REF}	Reference Input Voltage	
20	R _{FB}	Internal Feedback Resistor	

ELECTRICAL CHARACTERISTICS

(V_{DD} = + 15 V, V_{REF} = +10 V unless otherwise noted)

Parameter	Symbol	Min	25°C Typ	Max	Tmin to Min	Tmax Max	Units	Test Conditions/Comments
STATIC PERFORMANCE ¹								FSR = Full Scale Range
Resolution (All Grades)	N	10			10		Bits	
Integral Non-Linearity (Relative Accuracy) J, A, S K, B, T L, C, U	INL			<u>+2</u> <u>+</u> 1 <u>+</u> 1/2		<u>+</u> 2 <u>+</u> 1 <u>+</u> 1/2	LSB	Best Fit Straight Line Spec. (Max INL – Min INL) / 2
Differential Non-Linearity J, A, S K, B, T L, C, U	DNL			<u>+</u> 2 <u>+</u> 1 <u>+</u> 1/2		<u>+</u> 2 ±1 <u>+</u> 1/2	LSB	
Gain Error	GE		<u>+</u> 0.3	<u>+</u> 0.4		<u>+</u> 0.4	% FSR	Using Internal R _{FB}
Gain Temperature Coefficient ²	TC _{GE}					<u>+</u> 2	ppm/°C	$\Delta Gain/\Delta Temperature$
Power Supply Rejection Ratio	PSRR		<u>+</u> 5	<u>+</u> 50		<u>+</u> 50	ppm/%	$ \Delta Gain/\Delta V_{DD} , \Delta V_{DD} = \pm 5\%$
Output Leakage	I _{OUT}		<1	<u>+</u> 10		<u>+</u> 200	nA	$I_{OUT1} V_{IN} = 0 V$ $I_{OUT2} V_{IN} = V_{DD}$
DYNAMIC PERFORMANCE ²								
Current Settling Time AC Feedthrough at I _{OUT1}	ts F⊤		500	1000 1			ns mV p-p	Full Scale Change to 1/2 LSB V _{REF} = 10kHz, 20 Vp-p, sinewave
REFERENCE INPUT								
Input Resistance Voltage Input Range ²	R _{IN}	5	10 <u>+</u> 10	20 <u>+</u> 25	5	20	kΩ V	
DIGITAL INPUTS ³								
Logical "1" Voltage Logical "0" Voltage Input Leakage Current	V _{IH} V _{IL} I _{LKG}	3.0	2.4	+0.8 <u>+</u> 1.0	3.0	+0.8 <u>+</u> 1.0	V V μA	$V_{IN} = 0 V$ and V_{DD}
ANALOG OUTPUTS								
Output Capacitance ² Scale Factor ²	C _{OUT1} C _{OUT1} C _{OUT2} C _{OUT2}		100	52 26 13 45			pF pF pF μA/V _{REF}	DAC Inputs all 1's DAC Inputs all 0's DAC Inputs all 1's DAC Inputs all 0's
POWER SUPPLY ⁴								
Functional Voltage Range ² Supply Current	V _{DD} I _{DD}	4.5	15	16 2	4.5	16 2	V mA	All digital inputs = 0 V or all = 5 V, 15 V

_ _ _ _ _ /

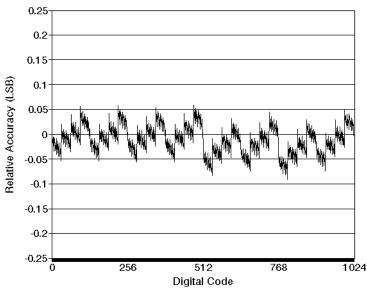
ELECTRICAL CHARACTERISTICS (CONT'D)

NOTES:

- ¹ Full Scale Range (FSR) is 10V for unipolar mode.
- ² Guaranteed but not production tested.
- ³ Digital Input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur.
- ⁴ Specified values guarantee functionality. Refer to other parameters for accuracy.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2}


V _{DD} to GND0.5, +17 \
Digital Input Voltage to GND (2) . GND –0.5 to V _{DD} +0.5 $\ensuremath{\backslash}$
I_{OUT1},I_{OUT2} to GND (2) \ldots GND –0.5 to V_{DD} +0.5 \backslash
V _{REF} to GND <u>+</u> 25 \
V _{RFB} to GND <u>+</u> 25 \

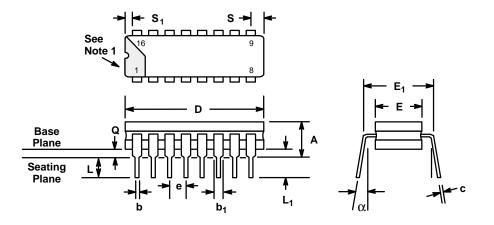
Storage Temperature65°C to +150°C
Lead Temperature (Soldering, 10 seconds) +300°C
Package Power Dissipation Rating to 75°C
CDIP, PDIP, SOIC, PLCC 800mW
Derates above 75°C 11mW/°C

NOTES:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. *All inputs have protection diodes* which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs.

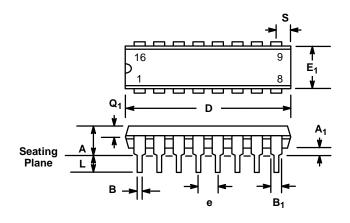
PERFORMANCE CHARACTERISTICS

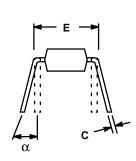

Graph 1. Relative Accuracy vs. Digital Code

APPLICATION NOTES Refer to Section 8 for Applications Information

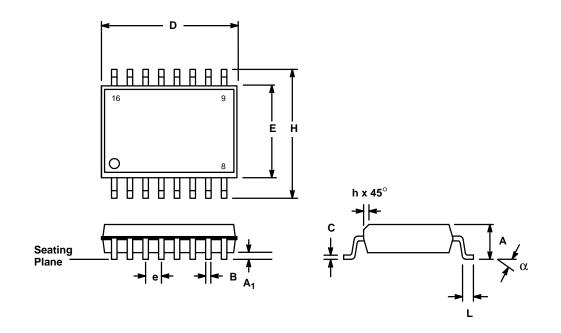
16 LEAD CERAMIC DUAL-IN-LINE (300 MIL CDIP) D16

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А		0.200		5.08	
b	0.014	0.023	0.356	0.584	_
b ₁	0.038	0.065	0.965	1.65	2
с	0.008	0.015	0.203	0.381	_
D		0.840		21.34	4
Е	0.220	0.310	5.59	7.87	4
E1	0.290	0.320	7.37	8.13	7
е	0.1	00 BSC	2.5	4 BSC	5
L	0.125	0.200	3.18	5.08	_
L ₁	0.150		3.81		—
Q	0.015	0.060	0.381	1.52	3
S		0.080		2.03	6
S ₁	0.005		0.13		6
α	0°	15°	0°	15 [°]	_

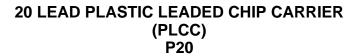

NOTES


- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one and is within the shaded area shown.
- 2. The minimum limit for dimension b_1 may be 0.023 (0.58 mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. The basic lead spacing is 0.100 inch (2.54 mm) between centerlines.
- 6. Applies to all four corners.
- 7. This is measured to outside of lead, not center.

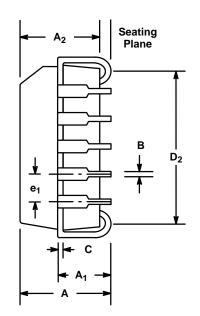
16 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP) N16


	INC	HES	MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	МАХ
А		0.200		5.08
A ₁	0.015	—	0.38	_
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	0.745	0.785	18.92	19.94
Е	0.295	0.325	7.49	8.26
E ₁	0.220	0.310	5.59	7.87
е	0.1	00 BSC	2.5	4 BSC
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.020	0.080	0.51	2.03

Note:	(1)	The minimum limit for dimensions B1 may be 0.023"
		(0.58 mm) for all four corner leads only.






	INC	CHES	MILLIN	IETERS
SYMBOL	MIN	МАХ	MIN	MAX
А	0.097	0.104	2.46	2.64
A ₁	0.0050	0.0115	0.127	0.292
В	0.014	0.019	0.356	0.482
С	0.0091	0.0125	0.231	0.318
D	0.402	0.412	10.21	10.46
E	0.292	0.299	7.42	7.59
е	0.0	50 BSC	1.2	7 BSC
н	0.400	0.410	10.16	10.41
h	0.010	0.016	0.254	0.406
L	0.016	0.035	0.406	0.889
α	0°	8°	0°	8°

	INC	CHES	MILLI	METERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.165	0.180	4.19	4.57
A ₁	0.100	0.110	2.54	2.79
A ₂	0.148	0.156	3.76	3.96
В	0.013	0.021	0.330	0.533
С	0.008	0.012	0.203	0.305
D	0.385	0.395	9.78	10.03
D ₁ (1)	0.350	0.354	8.89	8.99
D ₂	0.290	0.330	7.37	8.38
D ₃	0.200 Ref		5.0	8 Ref.
e ₁	0.050 BSC		1.2	7 BSC

Note: (1) Dimension D_1 does not include mold protrusion. Allowed mold protrusion is 0.254 mm/0.010 in.

Notes

Notes

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright EXAR Corporation Datasheet April 1995 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

