2-Input 1-Output Video Switch (W/75S. driver//3-Input 1-Output Video Switch (W/75S2 driver)

Outline

These ICs are high-end video switch ICs with 2-input 1-output or 3-input 1-output including a 75Ω driver. The series includes those with and without a built-in clamp circuit and a 6dB amp.
The circuit configuration table and block diagram are shown below.
MM1228 is introduced as a representative model in this document.

MM1221~MM1228 Series Circuit Configuration Table

Model name	\# of Inputs	\# of Outputs	6dB amp circuit	Clamp circuit	Power supply voltage range
MM1221	2	1	No	No	$8 \sim 13 \mathrm{~V}$
MM1222	2	1	Yes	No	$8 \sim 13 \mathrm{~V}$
MM1223	3	1	No	No	$8 \sim 13 \mathrm{~V}$
MM1224	3	1	Yes	No	$8 \sim 13 \mathrm{~V}$
MM1225	2	1	No	Yes	$4.7 \sim 13 \mathrm{~V}$
MM1226	2	1	Yes	Yes	$4.7 \sim 13 \mathrm{~V}$
MM1227	3	1	No	Yes	$4.7 \sim 13 \mathrm{~V}$
MM1228	3	1	Yes	Yes	$4.7 \sim 13 \mathrm{~V}$

MM1221~MM1228 Input/Output Voltage Measurement Values (typ.)

Model name	Power supply voltage	$\mathbf{5 V}$	$\mathbf{9 V}$	$\mathbf{1 2 V}$	Unit
	Input voltage		4.53	6.05	V
	Output voltage		4.5	6.1	V
MM1222	Input voltage		4.05	5.4	V
	Output voltage		5.34	7.12	V
MM1223	Input voltage		4.53	6.05	V
	Output voltage		4.5	6.1	V
MM1224	Input voltage		4.05	5.4	V
	Output voltage		5.34	7.12	V
MM1225	Input voltage	1.27	2.17	2.86	V
	Output voltage	1.31	2.25	2.96	V
$\mathbf{2}$ MM1226	Input voltage	1.3	2.2	2.9	V
	Output voltage	1.4	2.23	2.88	V
MM1227	Input voltage	1.27	2.17	2.86	V
	Output voltage	1.31	2.25	2.96	V
MM1228	Input voltage	1.3	2.2	2.9	V
	Output voltage	1.4	2.23	2.88	V

Block Diagram (MM1221~MM1228)

MM1221

SW	OUT
L	IN1
H	IN2

MM1223

SW1	SW2	OUT
L	L	IN1
H	L	IN2
L/H	H	IN3

MM1222

MM1224

Control input truth table

SW1	SW2	OUT
L	L	IN1
H	L	IN2
L/H	H	IN3

MM1225

Control input truth table

SW	OUT
L	IN1
H	IN2

MM1227

Control input truth table

SW1	SW2	OUT
L	L	IN1
H	L	IN2
L/H	H	IN3

MM1226

Control input truth table

SW	OUT
L	IN1
H	IN2

MM1228

Control input truth table

SW1	SW2	OUT
L	L	IN1
H	L	IN2
L/H	H	IN3

Introduction of Main Model

3-Input 1-Output Video Switch (with 75Ω driver, clamp and 6dB amp) Monolithic IC MM1228

Outline

This is a high performance 3-input 1-output video switch IC with 6 dB amp, clamp and 75Ω driver circuits. 1 Vp-p video signals can be output externally with 75Ω output.

Features

1. Built-in 75Ω driver circuit
2. Built-in 6 dB amp
3. Built-in clamp circuit
4. Models in the MM1221~MM1228 series without a clamp circuit can support audio or chroma circuits
5. Mute operation possible
6. Wide operating supply voltage range 4.7~13V
7. Low current consumption
8. Wideband frequency response

7 MHz at 0 dB
9. Crosstalk
$-64 \mathrm{~dB}(4.43 \mathrm{MHz})$

Packages

SOP-8C (MM1228XF)

Applications

1. TV
2. VCR
3. Video cameras
4. Other video equipment

Block Diagram

Control input truth table

SW1	SW2	OUT
L	L	IN1
H	L	IN2
L/H	H	IN3

Pin Description

Pin no.	Pin name	Function	Internal equivalent circuit diagram
$\begin{aligned} & 1 \\ & 3 \\ & 5 \end{aligned}$	IN1 IN2 IN3	Input	
$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SW1 } \\ & \text { SW2 } \end{aligned}$	Switch	
7	OUT	Output	
6	Vcc	Power supply	
8	GND	Ground	

Measuring Circuit

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Ratings	Units
Storage temperature	TSTG	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Operating temperature	Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Power supply voltage	VCC	15	V
Allowable loss	Pd	300	mW

Electrical Characteristics (Except where noted otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}$)

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Units
Operating power supply voltage range	Vcc		4.7		13.0	V
Consumption current	Id	Refer to Measuring Circuit		8.4	10.9	mA
Voltage gain	Gv	Refer to Measuring Circuit	+5.5	+6.0	+6.5	dB
Frequency characteristic	Fc	Refer to Measuring Circuit	-1	0	+1	dB
Differential gain	DG	Refer to Measuring Circuit		0	± 3	\%
Differential phase	DP	Refer to Measuring Circuit		0	± 3	deg
Output offset voltage	Voff	Refer to Measuring Circuit			± 30	mV
Crosstalk	$\mathrm{C}_{\text {T }}$	Refer to Measuring Circuit		-64	-54	dB
SW1 input voltage H	VIH1	Refer to Measuring Circuit	2.1			V
SW1 input voltage L	VIL1	Refer to Measuring Circuit			0.7	V
SW2 input voltage H	VIH2	Refer to Measuring Circuit	2.1			V
SW2 input voltage L	VIL2	Refer to Measuring Circuit			0.7	V

Measuring Procedures ($\mathrm{Vcc}_{\left.\mathrm{c}=5.0 \mathrm{v}, \mathrm{vc} 1=\mathrm{V}_{\mathrm{cc}}, \mathrm{vc} 2=\mathrm{OV}\right) ~}^{\text {a }}$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} \& \multirow[b]{2}{*}{Symbol} \& \multicolumn{5}{|c|}{Switch state} \& \multirow[b]{2}{*}{Measuring Procedure} \\
\hline \& \& S1 \& S2 \& S3 \& S4 \& S5 \& \\
\hline Consumption current \& Id \& 2 \& 2 \& 2 \& 2 \& 2 \& Connect a DC ammeter to the Vcc pin and measure. The ammeter is shorted for use in subsequent measurements. \\
\hline Voltage gain \& Gv \& 1
2
2
2 \& 2
1
2
2 \& 2
2
1
1 \& 2
1
1
2 \& 2
2
1 \& Input a 1.0 V P-p, 100 kHz sine wave to SG , and obtain Gv from the following formula given TP1 voltage as V1 and TP3 voltage as V2.
Gv=20LOG (V2/V1) dB \\
\hline Frequency characteristic \& Fc \& 2
2
2 \& 2
1
2
2 \& 2
2
1
1 \& 2
1
1
2 \& 2
2
1 \& For the above Gv measurement, given TP3 voltage for 7 MHz as \(\mathrm{V} 3, \mathrm{Fc}\) is obtained from the following formula.
\[
\mathrm{Fc}=20 \mathrm{LOG}(\mathrm{~V} 3 / \mathrm{V} 2) \mathrm{dB}
\] \\
\hline Differential gain \& DG \& 2
2
2 \& 2
1
2
2 \& 2
2
1
1
1 \& 2
1
1
2 \& 2
2
1
1 \& Input a 1.0 V P-P staircase wave to SG , and measure differential gain at TP4.
\[
\mathrm{APL}=10 \sim 90 \%
\] \\
\hline Differential phase \& DP \& 1
2
2
2
2 \& 2
1
2
2 \& 2
2
1
1
1 \& 2
1
1
2 \& 2
2
1
1 \& Proceed as for DG, and measure differential phase. \\
\hline Output offset voltage \& Voff \& 2
2
2 \& 2
2
2 \& 2
2
2 \& 2
1
1 \& 2
2
1 \& Measure the DC voltage difference of each switch status at TP2. \\
\hline Crosstalk \& \(\mathrm{C}_{\text {T }}\) \& 1
1
1
1
2
2
2
2
2
2
2 \& \begin{tabular}{l}
2 \\
2 \\
2 \\
2 \\
1 \\
1 \\
1 \\
1 \\
\hline 2 \\
2
\end{tabular} \& 2
2
2
2
2
2
2
2
1
1 \& \begin{tabular}{l}
1 \\
2 \\
1 \\
1 \\
2 \\
2 \\
2 \\
1 \\
\hline 2 \\
1
\end{tabular} \& \begin{tabular}{l}
2 \\
1 \\
1 \\
1 \\
2 \\
1 \\
1 \\
\hline 2 \\
2
\end{tabular} \& \begin{tabular}{l}
Assume VC1=2.1V, VC2=0.7V. \\
Input a \(1.0 \mathrm{~V}-\mathrm{P}, 4.43 \mathrm{MHz}\) sine wave to SG , and given TP1 voltage as V4 and TP3 voltage as V5, \(\mathrm{C}_{\mathrm{T}}\) is obtained from the following formula.
\[
\mathrm{C}_{\mathrm{T}=20 \mathrm{LOG}(\mathrm{~V} 5 / \mathrm{V} 4) \mathrm{dB}}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
Switch 1 input voltage H \\
Switch 1 input voltage L
\end{tabular} \& VIH1

VIL1 \& 2 \& 2 \& 2 \& 1 \& 2 \& Impress an optional DC voltage on TP7 and TP8. Gradually raise from VC1=0V. TP5 voltage when TP8 voltage is output on TP2 is $\mathrm{V}_{\mathrm{I}} 1$. Gradually lower from $\mathrm{VC} 1=\mathrm{Vcc}$. TP5 voltage when TP7 voltage is output on TP2 is Vil1.

\hline | Switch 2 input voltage H |
| :--- |
| Switch 2 input voltage L | \& VIH2

VIL2 \& 2 \& 2 \& 2 \& 2 \& 1 \& Impress an optional DC voltage on TP7 and TP9. Gradually raise from VC1=0V. TP5 voltage when TP9 voltage is output on TP2 is VIH2. Gradually lower from $\mathrm{VC} 1=\mathrm{Vcc}$. TP6 voltage when TP7 voltage is output on TP2 is VIL2.

\hline
\end{tabular}

