

Applications

- General Purpose LNA/Gain Block
- · Point to Point Radio
- Electronic Warfare
- · Military & Commercial Radar
- Communications

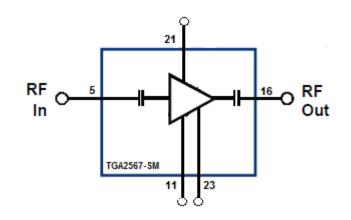
QFN 4x4mm 24L

Product Features

• Frequency Range: 2 - 20 GHz

P_{SAT}: 22 dBmP_{1dB}: 19 dBm

Small Signal Gain: 17 dBAdjustable Gain RangeOutput TOI: 29 dBm


Noise Figure: 2 dB

• Bias: $V_D = 5 \text{ V}$, $I_{DQ} = 100 \text{ mA}$, $V_{G1} = -0.7 \text{ V}$, $V_{G2} = +1.3 \text{ V}$ Typical

 \bullet ESD Protection Circuitry on $\,V_D\,,\,V_{G1}$ and $\,V_{G2}$

• Package Dimensions: 4.0 x 4.0 x 1.42 mm

Functional Block Diagram

General Description

TriQuint's TGA2567-SM is a LNA Gain Block fabricated on TriQuint's proven 0.15um pHEMT production process.

The TGA2567-SM operates from 2 to 20 GHz and typically provides 19 dBm of 1dB compressed output power with 17 dB of small signal gain. Greater than 16 dB of adjustable gain can be achieved by varying $V_{\rm G2}$. The Noise Figure is typically 2 dB at mid band

The TGA2567-SM is available in a low-cost, surface mount 24 lead 4x4 AIN QFN package base with an Air cavity LCP lid. TGA2567-SM is ideally suited to support both commercial and defense related applications.

Lead-free and RoHS compliant.

Evaluation Boards are available upon request.

Pad Configuration

Pad No.	Symbol
1,2,4,6,7,12,13,15,17- 19,24,25	GND
3,8-10,14,20,22	N/C
5	RF IN
11	V _{G1}
16	RF OUT
21	V _D
23	V_{G2}

Ordering Information

Part	ECCN	Description
TGA2567-SM	EAR99	2 – 20 GHz LNA / Gain Block

Absolute Maximum Ratings

Parameter	Value
Drain Voltage (V _D)	6 V
Drain to Gate Voltage (V_D-V_{G1})	8 V
Gate Voltage Range (V _{G1})	-2 to 1 V
Gate Voltage Range (V _{G2})	-2 to +4 V
Drain Current (I _D)	160 mA
Gate Current (I _{G1} , I _{G2})	-1 to 40 mA
Power Dissipation (P _{DISS})	2.8 W
RF Input Power, CW, 50 Ω , T = 25 °C (P _{IN})	+22 dBm
Channel Temperature (T _{CH})	200 °C
Mounting Temperature (30 Seconds)	260 °C
Storage Temperature	-55 to 150 °C

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

Recommended Operating Conditions

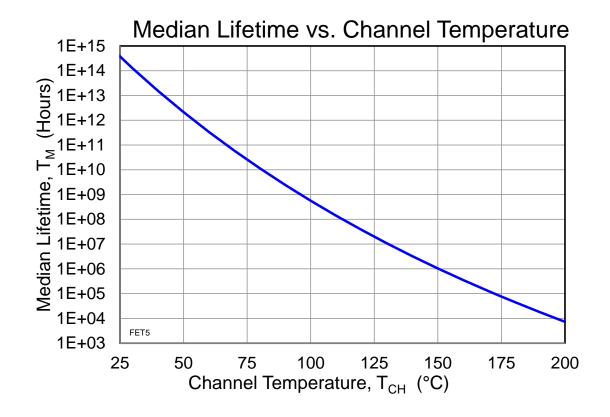
Parameter	Value
Drain Voltage (V _D)	5 V
Drain Current (I _{DQ})	100 mA
Gate Voltage (V _{G1})	-0.7 V (Typ.)
Gate Voltage (V _{G2})	1.3 V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: 25 °C, $V_D = 5$ V, $I_{DQ} = 100$ mA , $V_{G1} = -0.7$ V, $V_{G2} = 1.3$ V

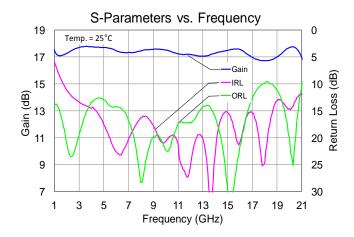
Parameter	Min	Typical	Max	Units
Operational Frequency Range	2		20	GHz
Small Signal Gain		17		dB
Input Return Loss		15		dB
Output Return Loss		14		dB
Output Power at Saturation		22		dBm
Output Power at P1dB		19		dBm
Output TOI		29		dBm
Noise Figure		2		dB
Gain Temperature Coefficient		0.013		dB/°C
Noise Temperature Coefficient		0.009		dB/°C

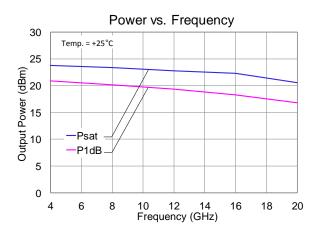


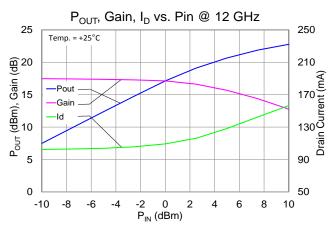
Thermal	and Reliabi	lity Information

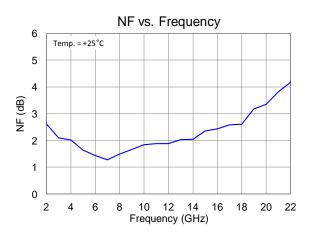
Parameter	Test Conditions	Value	Units
Thermal Resistance, $\theta_{JC (1)}$	Tbaseplate = 85 °C	41	°C/W
Channel Temperature, T _{CH} (Without RF Drive)	Tbaseplate = 85 °C, V _D = 5 V,	106	°C
Median Lifetime, T _M (Without RF Drive)	$I_{DQ} = 100 \text{ mA}, P_{DISS} = 0.5 \text{ W}$	2.4 x 10^8	Hrs
Channel Temperature, T _{CH} (Under RF Drive)	Tbaseplate = 85 °C, $V_D = 5 V$,	109	°C
Median Lifetime, T _M (Under RF Drive)	I_{DD} = 156 mA, P_{OUT} = 22.8 dBm, P_{DISS} = 0.59 W	1.6 x 10^8	Hrs

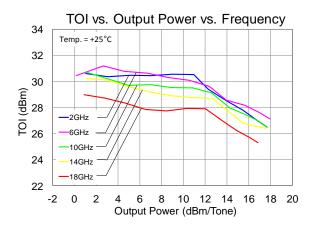
Notes: (1) Thermal resistance measured to back of package.

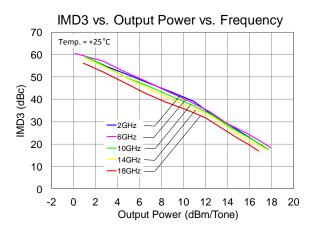

Median Lifetime

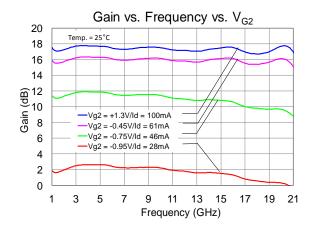


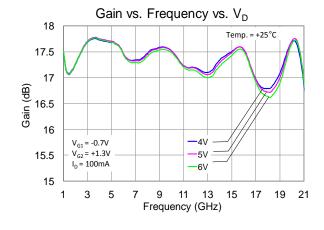


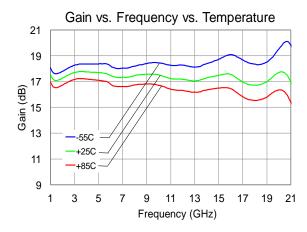

Typical Performance

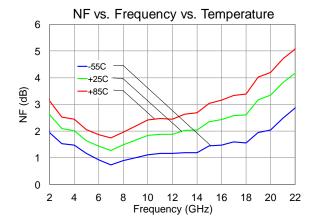

Conditions unless otherwise specified: $V_D = 5 \text{ V}$, $I_{DQ} = 100 \text{ mA}$, $V_{G1} = -0.7 \text{ V}$ Typical, $V_{G2} = 1.3 \text{ V}$.



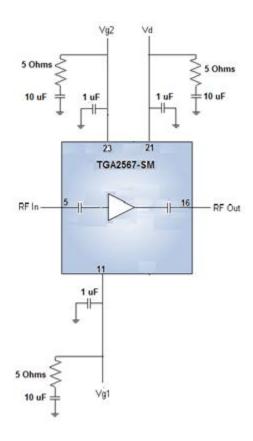







Typical Performance

Conditions unless otherwise specified: $V_D = 5 \text{ V}$, $I_{DQ} = 100 \text{ mA}$, $V_{G1} = -0.7 \text{ V}$ Typical, $V_{G2} = 1.3 \text{ V}$.



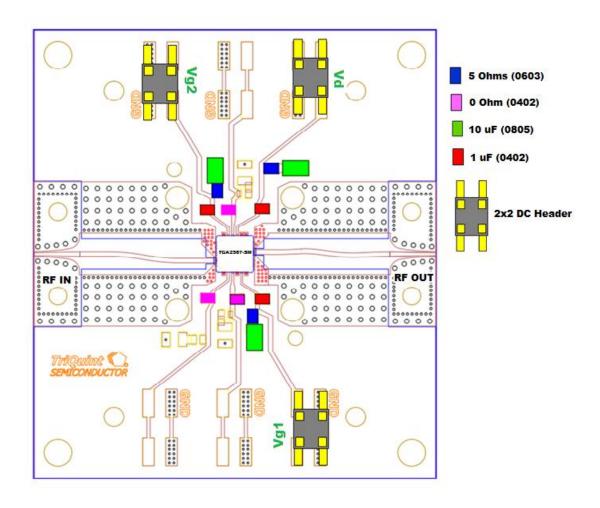
Application Circuit

Notes: To prevent damage to the device due to overshoot or oscillation issues, we recommend that current limits for all power supplies are set properly for each power supply before applying the voltage. The following are recommended current limits for each power supply:

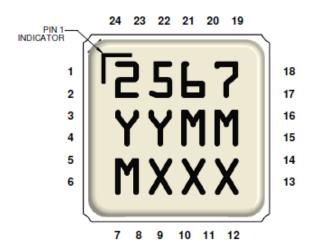
Set 10 mA current limit to V_{G1} and V_{G2} Set 140 mA current limit to V_{D}

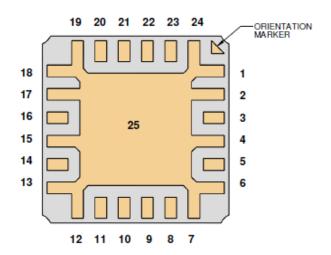
Bias-up Procedure

- 1. Apply -1.5 V to V_{G1}.
- 2. Apply +5 V to V_{D.}
- 3. Apply $+1.3 \text{ V to V}_{G2}$.
- 4. Adjust V_{G1} until I_{DQ} = 100 mA ($V_{G1} \sim -0.7$ V Typ.).
- 5. Turn On RF supply.
- 6. Adjust V_{G2} to obtain desired gain


Bias-down Procedure

- 1. Reduce V_{G2} to +1.3 V.
- 2. Turn off RF supply.
- 3. Reduce V_{G1} to -1.5 V. Ensure $I_{DQ} \sim 0$ mA
- 4. Set V_{G2} to 0 V.
- 5. Set V_D to 0 V.
- 6. Set V_{G1} to 0 V.

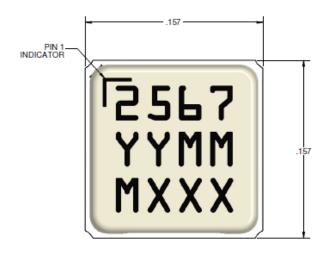

Recommended Board Layout Assembly

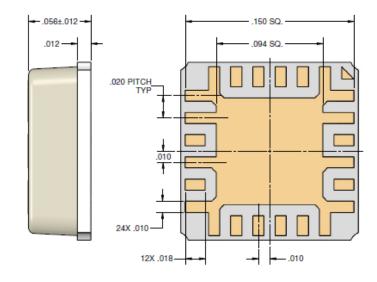

Top dielectric material is ROGERS 4350, 0.010 inch thickness with 0.5 oz copper.

Pin Layout

Pin Description

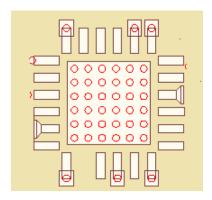
Pin	Symbol	Description
1,2,4,6,7,12,13,15,17-19,24, 25	GND	Backside paddles; must be grounded on PCB. Multiple vias should be employed to minimize inductance and thermal resistance. (2)
3,8-10,14,20,22	N/C	No internal connection; must be grounded on PCB.
5	RF IN	RF input
11	V_{G1}	Gate voltage. Bias network is required. (1)
16	RF OUT	RF output.
21	V _D	Drain voltage. Bias network is required. (1)
23	V_{G2}	Gate voltage. Bias network is required. (1)


Notes:


- 1. See Application Circuit on page 6 as an example.
- 2. See Mounting Configuration on page 9 for suggested footprint.

Mechanical Information

All dimensions are in inches. Unless specified otherwise, tolerances: ± 0.127 in.


Marking: Part number – 2567 Year/Month code – YYMM Batch ID – MXXX Package Materials:

Base Aluminum Nitride (AIN) Lid Liquid Crystal Polymer (LCP)

Part is EPOXY Sealed

Land Pads are Gold Plated

PCB Mounting Pattern

The pad pattern shown above has been developed and tested for optimized assembly at TriQuint. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

Ground / thermal vias are critical for the proper performance of this device. Vias should use a 0.008 in. diameter drill, and they are solid filled, copper plated shut.

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: TBD Value: TBD

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

MSL Rating

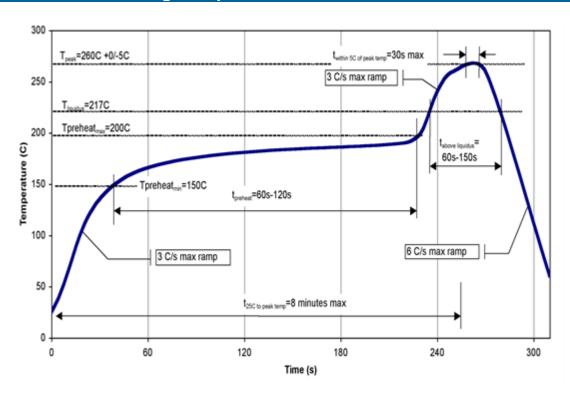
Level TBD at +260 °C convection reflow The part is rated Moisture Sensitivity Level TBD at 260°C per JEDEC standard IPC/JEDEC J-STD-020.

Solderability

Compatible with the latest version of J-STD-020, Lead free solder, 260°C

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).


This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

ECCN

US Department of Commerce: EAR99

Recommended Soldering Temperature Profile

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

 Web:
 www.triquint.com
 Tel:
 +1.972.994.8465

 Email:
 info-sales@triquint.com
 Fax:
 +1.972.994.8504

For technical questions and application information: Email: info-products@triquint.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.