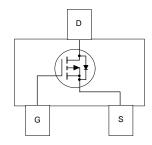

NDS352AP


General Description

These P -Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as notebook computer power management, portable electronics, and other battery powered circuits where fast high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- = -0.9 A, -30 V. $R_{DS(ON)}$ = 0.5 Ω @ V_{GS} = -4.5 V $R_{DS(ON)}$ = 0.3 Ω @ V_{GS} = -10 V.
- Industry standard outline SOT-23 surface mount package using proprietary SuperSOTTM-3 design for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDS352AP	Units
V _{DSS}	Drain-Source Voltage		-30	V
V_{GSS}	Gate-Source Voltage - Continuous		±20	V
I _D	Maximum Drain Current - Continuous	(Note 1a)	±0.9	А
	- Pulsed		±10	
P_{D}	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T_J , T_{STG}	Operating and Storage Temperature Range	ge	-55 to 150	℃
THERMA	L CHARACTERISTICS			
R _{øJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W
R _{øJC}	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

NDS352AP

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	RACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, \ V_{GS} = 0 \text{ V}$				-1	μΑ
			T _J =125°C			-10	μA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAR	RACTERISTICS (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$		-0.8	-1.7	-2.5	V
			T _J =125°C	-0.5	-1.4	-2.2	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -0.9 \text{ A}$			0.45	0.5	Ω
			T _J =125°C		0.65	0.7	
		$V_{GS} = -10 \text{ V}, I_{D} = -1 \text{ A}$			0.25	0.3	
I _{D(ON)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$		-2			Α
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, \ I_{D} = -0.9 \text{ A}$			1.9		S
DYNAMIC	CHARACTERISTICS					1	
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, \ V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$			135		pF
C _{oss}	Output Capacitance				88		pF
C _{rss}	Reverse Transfer Capacitance				40		pF
SWITCHI	NG CHARACTERISTICS (Note 2)	•					
t _{d(on)}	Turn - On Delay Time	$V_{DD} = -6 \text{ V}, \ I_{D} = -1 \text{ A},$			5	10	ns
t,	Turn - On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		17	30	ns	
t _{d(off)}	Turn - Off Delay Time				35	70	ns
t _f	Turn - Off Fall Time				30	60	ns
$t_{d(on)}$	Turn - On Delay Time	$V_{DD} = -10 \text{ V}, I_{D} = -1 \text{ A},$			8	15	ns
t,	Turn - On Rise Time	$V_{GS} = -10 \text{ V}, \ R_{GEN} = 50 \Omega$		16	30	ns	
$t_{d(off)}$	Turn - Off Delay Time				35	90	ns
t,	Turn - Off Fall Time				30	90	ns
$\overline{Q_{g}}$	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_{D} = -0.9 \text{ A},$ $V_{GS} = -4.5 \text{ V}$			2	3	nC
Q_{gs}	Gate-Source Charge				0.5		nC
Q_{gd}	Gate-Drain Charge				1		nC

NDS352AP

Electrical Characteristics (T _A = 25°C unless otherwise noted)									
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
Is	Maximum Continuous Source Current				-0.42	Α			
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				-10	Α			
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -0.42 \text{ (Note 2)}$		-0.8	-1.2	V			

Notes

1. R_{But} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{But} is guaranteed by design while R_{But} is determined by the user's board design.

$$P_D(t) = \frac{T_J - T_A}{R_{\theta JA}(t)} = \frac{T_J - T_A}{R_{\theta JC} + R_{\theta CA}(t)} = I_D^2(t) \times R_{DS(ON)@T_J}$$

Typical $R_{\rm guA}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

a. 250°C/W when mounted on a 0.02 in² pad of 2oz copper.

b. 270°C/W when mounted on a 0.001 in² pad of 2oz copper.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300 \mu s,$ Duty Cycle $\leq 2.0 \%.$