Vishay Dale

T, M, C

NTC Thermistors, Radial Leaded and Coated

www.vishay.com

ADDITIONAL RESOURCES

QUICK REFERENCE DATA									
PARAMETER	VALUE	UNIT							
Resistance value at 25 °C	30 to 1M	Ω							
Tolerance on <i>R</i> ₂₅ -value (point matched)	$\pm 1, \pm 2, \pm 3, \pm 5, \pm 10$	%							
Temperature accuracy (curve tracking)	± 0.2, ± 0.5, ± 1	°C							
B _{25/75} -value	3477 to 4247	K							
B _{25/85} -value	3468 to 4262	K							
Maximum dissipation	50 to 100	mW							
Dissipation factor δ (for information only)	2 to 3.5	mW/K							
Thermal time constant τ (for information only)	6 to 14	S							
Response time (oil) (for information only)	1.3	s							
Operating temperature range at zero power (short term)	-40 to +125 (150)	°C							
Weight	≈ 0.075 to 0.15	g							

FEATURES

- Small size conformally coated
- Wide resistance range
- Available in 5 different R-T curves
- Available in point matched tolerances down to 1 % and curve tracking precision down to \pm 0.2 °C

 Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

Temperature measurement, sensing and control in industrial, consumer and telecom applications. For on-board sensing or for accurate remote sensing in metal probes or housings.

DESCRIPTION

Models T, M, and C are conformally coated, leaded thermistors. The coating is baked-on phenolic for durability and long-term stability. Models M and C have tinned solid copper leads. Model T has solid nickel wires with Teflon[®] insulation.

DESIGN-IN SUPPORT

For complete Curve Computation, visit: www.vishay.com/thermistors/ntc-curve-list/

T, M, C PRODUCT DATA AND R ₂₅ RESISTANCE RANGE AVAILABILITY										
CURVE	B _{25/75} (K)	B _{25/85} (K)	TCR ₂₅ (%/K)	T M C (kΩ) (kΩ) (kΩ)		-	R ₂₅ ± TOL. AVAILABILITY			
2	3477	3486	-3.84		0.03 to 3.3		1, 2, 3, 5, 10			
9	3679	3694	-4.03		10 to 56		1, 2, 3, 5, 10			
8	3925	3943	-4.30	20 to 220 1, 2, 3, 5, 1						
1	3964	3974	-4.39		0.2 to 18		1, 2, 3, 5, 10			
4	4247	4262	-4.67	10 to 100 1, 2, 3, 5, 10						
Maximum dissip	pation at 25 °C in r	mW		50	75	100				
Dissipation factor in mW/K ⁽¹⁾				2.0	2.5	3.0				
Response time in s ⁽¹⁾				1.3	1.2	1.4				
Thermal time co	onstant in s ⁽¹⁾			14	10	6				

Note

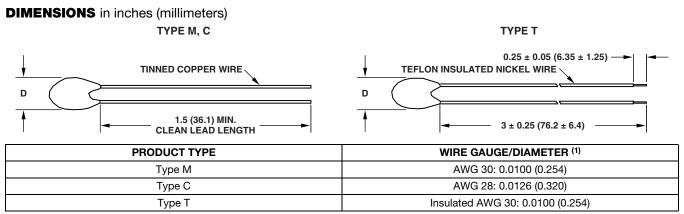
⁽¹⁾ For information only, dissipation factor, response time, and thermal time constant are wire type and product size dependent

STANDARD RESISTANCE VALUES at 25 °C in Ω									
33	82	270	680	2.2K	5.6K	18K	50K	150K	
39	100	330	820	2.7K	6.8K	22K	56K	220K	
47	120	390	1K	3.3K	8.2K	27K	68K		
50	150	470	1.2K	3.9K	10K	33K	82K		
56	180	500	1.5K	4.7K	12K	39K	100K		
68	220	560	1.8K	5.0K	15K	47K	120K		

Note

Most popular and available values, intermediate resistance values and tolerances available on request

www.vishay.com


T, M, C

Vishay Dale

GLOBAL PART NUMBER AND ORDERING INFORMATION											
Global Part Numberir	ng: 01C2001FP for PC	INT MATCHE	ED THERM	IISTORS							
CURVE NR	GLOBAL MO	INT MATCH DLERANCE	PA	PACKAGING							
01 02	T M C			= 2K = 150K	I C	F = lead (Pb)-free, bulk P = tin / lead, bulk					
04 08	C				$H = \pm 3 \%$ $J = \pm 5 \%$						
09						$= \pm 10\%$					
Global Part Numberin	ng: 01C2001SPC3 for	CURVE TRAC	CKING TH	ERMISTORS							
0 1 C	2 0 0	1 S	Р	C 3							
CURVE	GLOBAL MODEL	RESISTA VALU	-	CHARACTER	RISTICS	PACKAGING		JRVE DLERA			
01	T	2001 =	= 2K	S		F = lead (Pb)-free	, A 3	A 4	A5	A 8	
04 08	M C					bulk P = tin / lead, bull	, ВЗ	B4	B5	B 8	
09	-	l					C3		C5	C8	

Note

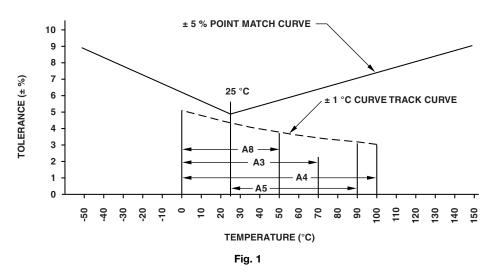
⁽¹⁾ See following pages for tolerance explanations and details

Note

(1) Additional wire gauges (non-insulated) available as AWG24 (type E), AWG26 (type B) and AWG32 (type F). Please contact Vishay (<u>thermistor1@vishay.com</u>) for further details

CURVE NUMBER	<i>R</i> ₂₅ MIN.	DIAMETER INCH (mm)	STANDARD R ₂₅ RANGE	DIAMETER INCH (mm)		
	Ω	R ₂₅ MIN.	Ω	R ₂₅ MAX.	R ₂₅ MIN.	
2	30	0.342 (8.69)	330 to 3K	0.095 (2.41)	0.136 (3.45)	
9			10K to 56K	0.095 (2.41	0.150 (3.81)	
8	20K	0.131 (3.33)	27K to 220K	0.095 (2.41)	0.125 (3.18)	
1	200	0.315 (8.00)	1.8K to 18K	0.095 (2.41)	0.136 (3.45)	
4			10K to 100K	0.095 (2.41)	0.136 (3.45)	

Note


Maximum body diameter is dependent on selected curve number and value, the lower resistance values have the largest diameter. For a
specific part number within the given resistance ranges, please contact <u>thermistor1@vishay.com</u> for maximum diameter information

TOLERANCES AVAILABLE FOR TYPE T, M, AND C THERMISTORS

DESCRIPTION OF THERMISTOR TOLERANCES

The many applications of thermistors have mandated the need for two basic tolerance schemes for these products - curve tracking and point match thermistors. An example of the resistance tolerance at various temperatures for the two different tolerancing methods is described in the following graph:

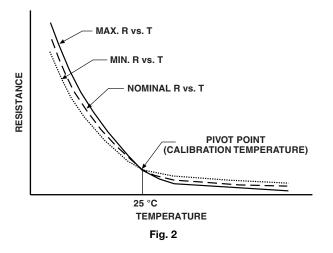
CURVE TRACKING TOLERANCE

Thermistors are calibrated at the high temperature of the curve track range and then final tested at the low temperature of the curve track range. This ensures that the thermistor will meet the specified temperature accuracy at every temperature within the desired temperature range. Several temperature ranges are available and the accuracy of the thermistor may be ± 0.2 °C, ± 0.5 °C, and ± 1.0 °C. The curve tracking temperature ranges and their code designators are shown in figure 1 and "Standard Electrical Specifications for Curve Tracking Thermistors" table.

To specify, add the appropriate suffix from the following table to the part number.

Example: 01M1002SFB3 = curve 1, 10 kΩ at +25 °C, curve tracking to ± 0.5 °C from 0 °C to +70 °C

STAND	STANDARD ELECTRICAL SPECIFICATIONS FOR CURVE TRACKING THERMISTORS											
TEMPER RANGE F SPECIFIE ACCURA	OR D	E 0 °C to +70 °C		0 °C to +100 °C		25 °C to +90 °C		0 °C to +50 °C				
ACCURA	CY	±1°C	± 0.5 °C	± 0.2 °C	±1°C	± 0.5 °C	±1°C	± 0.5 °C	± 0.2 °C	±1°C	± 0.5 °C	± 0.2 °C
PART NC). SUFFIX	- A3	- B3	- C3	- A4	- B4	- A5	- B5	- C5	- A8 - B8 -		- C8
ER	01	х	х	х	х	х	х	х	х	х	х	х
NUMBER	04	х	х	х	х	х	х	х	х	х	х	х
CURVE	08	х	х	х	х	х	х	х	х	х	х	х
cu	09	х	х	х	х	х	х	х	х	х	х	х



POINT MATCH TOLERANCE

The standard leaded thermistors are calibrated and tested at 25 °C to a tolerance of ± 5 % or ± 10 %; however, tighter tolerance, point matched thermistors are readily available as are special point match temperatures to fit your application.

Since these thermistors have only one controlled point of reference (the point match temperature), the resistance at other temperatures is given by the specific curve resistance vs. temperature ratio.

POINT MATCH TOLERANCES VS. TEMPERATURE

Point match resistance tolerances at temperatures other than 25 °C are not the same as at the calibration temperature. This difference is presented in Fig. 2.

The tolerance at any given temperature is the point match tolerance plus a manufacturing tolerance depending on the specific curve.

DESIGN-IN SUPPORT

A spreadsheet is available for the Vishay thermistor part numbers that gives you the resistance vs temperature data, the temperature coefficients and accuracy levels at any given temperature range and step. The Steinhart & Hart formula and coefficients A, B, and C are shown as well. This data can be obtained by visiting the Vishay NTC curve computation page at: www.vishay.com/thermistors/ntc-curve-list/ or send your part number with required temperature range and step to thermistor1@vishay.com.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Vishay:

01M2002SPB3 01M2502SPB3 01M1502SPB4 07C1003SPA3 01M5001JP 01M1002SPB3 01M1502SPB8 01M1002SPB4 01M1502SPA3 01M1002SPA3 01M1502SPA4 01M1002SPA5 08C3002SPA3 01C3000SPC3 02C1751FP 04M6802JP 01C5101FP 01M1501JP 12M1003JP 02M1501JP 04T5002FP 04T5002JP 01M5001SPB4 01M6001SPC3 01M5001SPB3 01M5001SPC3 01C9001JP 01C4001JP 12C1503JP 01M1701JP 12C2503JP 01C1752SPC3 01M5001KP 01M1601KP 02C7500KP 12M5002JP 01M500JP 02C9000FP 7M1203-5 7M5002-5 7M7502-5 01M2252FP 09T1002JP 09T1002FP 01T1002FP 01T1002JP 01C1002JP 01C1002FP 01C6001JP 01C6001KP 04M1003SPC3 01M6001FP 01M6001JP 01T2251SPA3 02M1801SPB2 08C1003SPC3 08C1003SPB5 07C5002FP 02C5000SPA3 02C3000SPA2 08C1003FP 02C1001FP 04C1003SPC3 07C1003KP 02C1001KP 01C1001FP 01C1001JP 02C6000KP 02C5000KP 07M1203KP 02C5000FP 4M3002-C3 4M5002-A4 01M2251FP 01T3001FP 02M1201SPB3 04M5002FP 04T5002SPC5 04T1003JP 08T1003JP 02C1801JP 02C8000FP 08T4002SPC5 01C3001KP 08M3002SPB5 01C2001JP 01C6801SPC3 01T1001FP 04M1003JP 12M1004JP 01M1502JP 01C7001JP 01C7001FP 08T1003SPC5 01T5001FP 01T5001JP 01M2502JP 07M2502KP 02C2000JF 01C2001SPB3