
Vishay Siliconix

Reel RoHS

COMPLIANT

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	900				
R _{DS(on)} (Ω)	V _{GS} = 10 V 8.0				
Q _g (Max.) (nC)	38				
Q _{gs} (nC)	4.7				
Q _{gd} (nC)	21				
Configuration	Single				

FEATURES

- Surface Mount (IRFBF20S/SiHFBF20S)
- Low-Profile Through-Hole (IRFBF20L/SiHFBF20L)
- Available in Tape and (IRFBF20S/SiHFBF20S)
- Dynamic dV/dt Rating
- 150 °C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead (Pb)-free Available

DESCRIPTION

Third generation Power MOSFETs form Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The D²PAK is a surface mount power package capabel of the accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²PAK is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application. The through-hole version (IRFBF20L/SiHFBF20L) is available for low-profile applications.

ORDERING INFORMATION						
Package	D ² PAK (TO-263)	D ² PAK (TO-263)	D ² PAK (TO-263)	I ² PAK (TO-262)		
Lead (Pb)-free		IRFBF20STRLPbF ^a	IRFBF20STRRPbF ^a	IRFBF20LPbF		
Lead (FD)-free	b)-free SiHFBF20S-E3	SiHFBF20STL-E3 ^a	SiHFBF20STR-E3 ^a	SiHFBF20L-E3		
SnPb	IRFBF20S	IRFBF20STRL ^a	IRFBF20STRR ^a	IRFBF20L		
SHED	SiHFBF20S-E3	SiHFBF20STL ^a	SiHFBF20STR ^a	SiHFBF20L		

Note

a. See device orientation.

ABSOLUTE MAXIMUM RATI	NGS $T_C = 25 ^{\circ}C$, unless other	wise noted		
PARAMETER	SYMBOL	LIMIT	UNIT	
Drain-Source Voltage ^e		V _{DS}	900	v
Gate-Source Voltage ^e		V _{GS}	± 20	v
Continuous Drain Current	V_{GS} at 10 V $\frac{T_{C} = 25 \degree C}{T_{C} = 100 \degree C}$		1.7	
	V_{GS} at 10 V $T_C = 100 \text{ °C}$		1.1	А
Pulsed Drain Current ^{a,e}	I _{DM}	6.8		
Linear Derating Factor		0.43	W/°C	
Single Pulse Avalanche Energy ^{b, e}	E _{AS}	180	mJ	
Repetitive Avalanche Currenta	I _{AR}	1.7	A	
Repetitive Avalanche Energy ^a	E _{AR}	5.4	mJ	
Maniana David Dissignation	T _C = 25 °C	D	54	w
Maximum Power Dissipation	T _A = 25 °C	P _D	3.1	vv
Peak Diode Recovery dV/dtc, e	dV/dt	1.5	V/ns	

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS $T_C = 25 \degree C$, unless otherwise noted						
PARAMETER	SYMBOL	LIMIT	UNIT			
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 150	°C			
Soldering Recommendations (Peak Temperature)	for 10 s		300 ^d	U U		
Mounting Torque	6-32 or M3 screw		10	N		

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD} = 50 \text{ V}$; starting $T_J = 25 \text{ °C}$, L = 117 mH, $R_G = 25 \Omega$, $I_{AS} = 1.7 \text{ A}$ (see fig. 12). c. $I_{SD} \le 1.7 \text{ A}$, dl/dt $\le 70 \text{ A/}\mu\text{s}$, $V_{DD} \le V_{DS}$, $T_J \le 150 \text{ °C}$. d. 1.6 mm from case.

e. Uses IRFBF20/SiHFBF20 data and test conditions.

THERMAL RESISTANCE RATINGS						
PARAMETER	RAMETER SYMBOL TYP. MAX. UN					
Maximum Junction-to-Ambient (PCB Mounted, steady-state) ^a	R _{thJA}	-	40	°C/W		
Maximum Junction-to-Case	R _{thJC}	-	2.3			

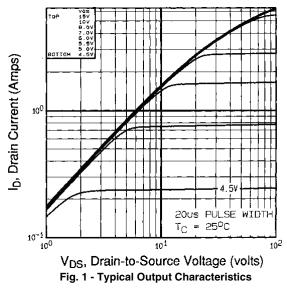
Note

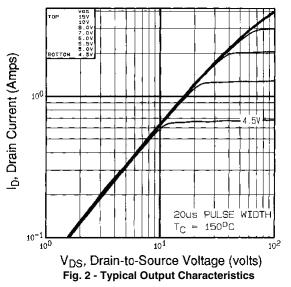
a. When mounted on 1" square PCB (FR-4 or G-10 material).

SPECIFICATIONS $T_J = 25 \ ^{\circ}C$, unless other	wise noted					
PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static					-		
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} -	= 0 V, I _D = 250 μA	900	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	ce to 25 °C, I _D = 1 mA	-	1.1	-	mV/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μA	2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 20 V	-	-	± 100	nA
Zara Cata Valtaga Drain Current		V _{DS} =	= 900 V, V _{GS} = 0 V	-	-	100	- μΑ
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 720 V	∕, V _{GS} = 0 V, T _J = 125 °C	-	-	500	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 1.0 A ^b	-	-	8.0	Ω
Forward Transconductance	9 _{fs}	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 1.0 \text{ A}^{b}$		0.6	-	-	S
Dynamic							
Input Capacitance	C _{iss}		V _{GS} = 0 V,		490	-	pF
Output Capacitance	C _{oss}	$V_{DS} = 25 V,$		-	55	-	
Reverse Transfer Capacitance	C _{rss}	t = 1	.0 MHz, see fig. 5	-	18	-	1
Total Gate Charge	Qg		$I_{D} = 1.7 \text{ A}, V_{DS} = 360 \text{ V},$ see fig. 6 and 13 ^b	-	-	38	
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V		-	-	4.7	nC
Gate-Drain Charge	Q _{gd}			-	-	21	
Turn-On Delay Time	t _{d(on)}	- V _{DD} = 450 V, I _D = 1.7 A,		-	8.0	-	
Rise Time	tr			-	21	-	
Turn-Off Delay Time	t _{d(off)}		$R_{\rm G} = 18 \ \Omega, \ V_{\rm GS} = 10 \ V, \ \rm see \ fig. \ 10^{\rm b}$		56	-	ns
Fall Time	t _f	1		-	32	-]

Vishay Siliconix

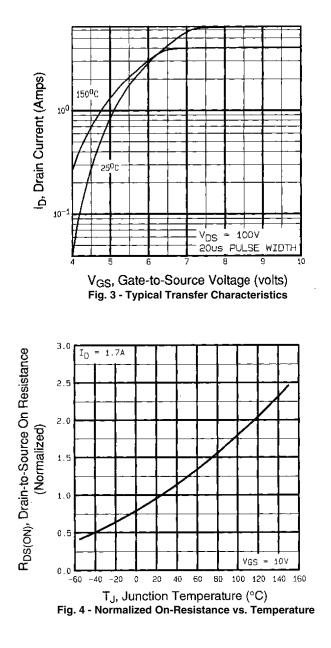
SPECIFICATIONS $T_J = 25 \text{ °C}$, unless otherwise noted							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Drain-Source Body Diode Characteristics							
Continuous Source-Drain Diode Current	١ _S	MOSFET symbol showing the	-	-	1.7	А	
Pulsed Diode Forward Current ^a	I _{SM}	p - n junction diode	-	-	6.8	A	
Body Diode Voltage	V _{SD}	$T_J = 25 \ ^{\circ}C, \ I_S = 1.7 \ A, \ V_{GS} = 0 \ V^b$	-	-	1.5	V	
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 1.7 A, dl/dt = 100 A/µs ^b	-	350	530	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	$I_{\rm J} = 25$ C, $I_{\rm F} = 1.7$ A, $dI/dt = 100$ A/µs ^o	-	0.85	1.3	μC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L_{S} and $L_{\text{D}})$					

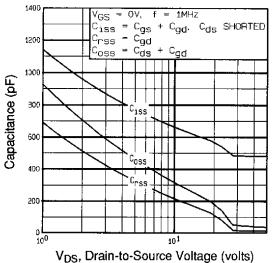

Notes

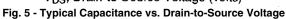

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

c. Uses IRFBF20/SiHFBF20 data and test conditions.







Vishay Siliconix

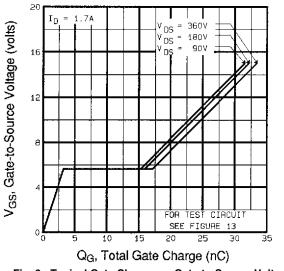


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Vishay Siliconix

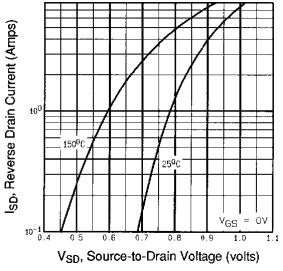
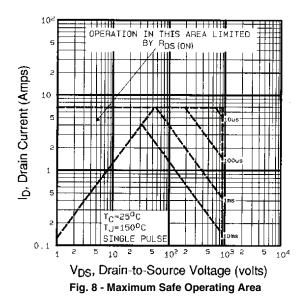



Fig. 7 - Typical Source-Drain Diode Forward Voltage

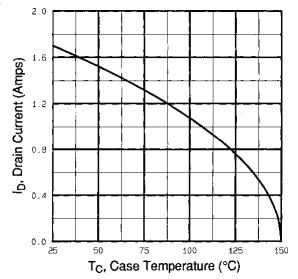


Fig. 9 - Maximum Drain Current vs. Case Temperature

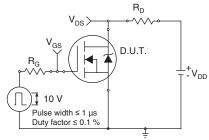
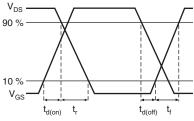
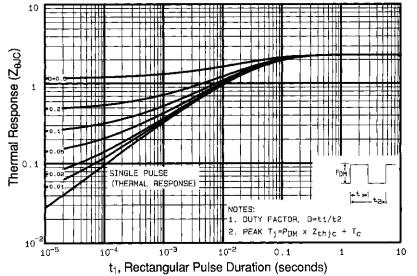
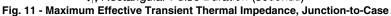
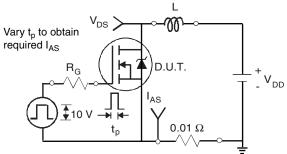
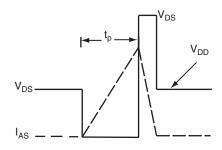


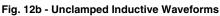
Fig. 10a - Switching Time Test Circuit

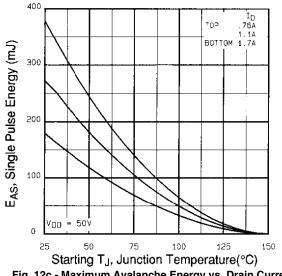





Fig. 10b - Switching Time Waveforms

Vishay Siliconix







Vishay Siliconix

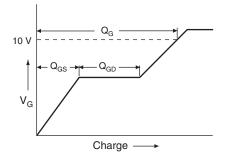


Fig. 13a - Basic Gate Charge Waveform

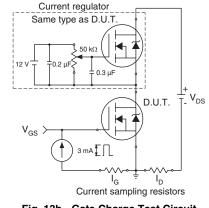


Fig. 13b - Gate Charge Test Circuit

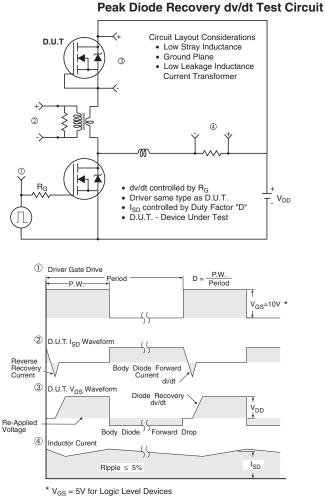


Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91121.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.