DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

C8051F38B-GMR 查看數據表(PDF) - Silicon Laboratories

零件编号
产品描述 (功能)
生产厂家
C8051F38B-GMR
Silabs
Silicon Laboratories 
C8051F38B-GMR Datasheet PDF : 321 Pages
First Prev 151 152 153 154 155 156 157 158 159 160 Next Last
C8051F380/1/2/3/4/5/6/7/C
19.6.2. External RC Example
If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as
shown in Figure 19.1, “RC Mode”. The capacitor should be no greater than 100 pF; however, for very small
capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To deter-
mine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first
select the RC network value to produce the desired frequency of oscillation, according to Equation , where
f = the frequency of oscillation in MHz, C = the capacitor value in pF, and R = the pull-up resistor value in
k.
f = 1.23 103 § R C
Equation 19.1. RC Mode Oscillator Frequency
For example: If the frequency desired is 100 kHz, let R = 246 kand C = 50 pF:
f = 1.23( 103 ) / RC = 1.23 ( 103 ) / [ 246 x 50 ] = 0.1 MHz = 100 kHz
Referring to the table in SFR Definition 19.6, the required XFCN setting is 010b.
19.6.3. External Capacitor Example
If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in
Figure 19.1, “C Mode”. The capacitor should be no greater than 100 pF; however, for very small capaci-
tors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the
required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capaci-
tor to be used and find the frequency of oscillation according to Equation , where f = the frequency of oscil-
lation in MHz, C = the capacitor value in pF, and VDD = the MCU power supply in Volts.
f = KF  C VDD
Equation 19.2. C Mode Oscillator Frequency
For example: Assume VDD = 3.0 V and f = 150 kHz:
f = KF / (C x VDD)
0.150 MHz = KF / (C x 3.0)
Since the frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 19.6
(OSCXCN) as KF = 22:
0.150 MHz = 22 / (C x 3.0)
C x 3.0 = 22 / 0.150 MHz
C = 146.6 / 3.0 pF = 48.8 pF
Therefore, the XFCN value to use in this example is 011b and C = 50 pF.
Rev. 1.4
151

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]