LTC3732
APPLICATIO S I FOR ATIO
increasing current draw with increasing voltage. The EAIN
pin should be artificially held 70% above its nominal
operating level of 0.6V, or 0.42V in order to prevent the IC
from “folding back” the peak current level. A suggested
circuit is shown in Figure 8.
VCC
VCC
CALCULATE FOR
0.42V TO 0.55V
LTC3732
Q1
EAIN
3732 F08
Figure 8. Foldback Current Elimination
The emitter of Q1 will hold up the EAIN pin to a voltage in
the absence of VOUT that will prevent the internal sensing
circuitry from reducing the peak output current. Remov-
ing the function in this manner eliminates the external
MOSFET’s protective feature under short-circuit condi-
tions. This technique will also prevent the short-circuit
latchoff function from turning off the part during a short-
circuit event and the output current will only be limited to
N • 75mV/RSENSE.
Undervoltage Reset
In the event that the input power source to the IC (VCC)
drops below 4V, the RUN/SS capacitor will be discharged
to ground. When VCC rises above 4V, the RUN/SS capaci-
tor will be allowed to recharge and initiate another soft-
start turn-on attempt. This may be useful in applications
that switch between two supplies that are not diode
connected, but note that this cannot make up for the
resultant interruption of the regulated output.
Phase-Locked Loop and Frequency Synchronization
The IC has a phase-locked loop comprised of an internal
voltage controlled oscillator and phase detector. This
allows the top MOSFET of output stage 1’s turn-on to be
locked to the rising edge of an external source. The
frequency range of the voltage controlled oscillator is
±50% around the center frequency fO. A voltage applied to
the PLLFLTR pin of 1.2V corresponds to a frequency of
approximately 400kHz. The nominal operating frequency
range of the IC is 225kHz to 680kHz.
The phase detector used is an edge sensitive digital type
that provides zero degrees phase shift between the exter-
nal and internal oscillators. This type of phase detector will
not lock the internal oscillator to harmonics of the input
frequency. The PLL hold-in range, ∆fH, is equal to the
capture range, ∆fC:
∆fH = ∆fC = ±0.5 fO
The output of the phase detector is a complementary pair
of current sources charging or discharging the external
filter components on the PLLFLTR pin. A simplified block
diagram is shown in Figure 9.
EXTERNAL
OSC
PHASE
DETECTOR/
OSCILLATOR
OSC
RLP
2.4V
10k
CLP
PLLFLTR
PLLIN
DIGITAL
PHASE/
FREQUENCY
50k
DETECTOR
3732 F09
Figure 9. Phase-Locked Loop Block Diagram
If the external frequency (fPLLIN) is greater than the oscil-
lator frequency, fOSC, current is sourced continuously,
pulling up the PLLFLTR pin. When the external frequency
is less than fOSC, current is sunk continuously, pulling
down the PLLFLTR pin. If the external and internal fre-
quencies are the same, but exhibit a phase difference, the
current sources turn on for an amount of time correspond-
ing to the phase difference. Thus, the voltage on the
PLLFLTR pin is adjusted until the phase and frequency of
the external and internal oscillators are identical. At this
stable operating point, the phase comparator output is
open and the filter capacitor CLP holds the voltage. The IC
PLLIN pin must be driven from a low impedance source
such as a logic gate located close to the pin. When using
multiple ICs for a phase-locked system, the PLLFLTR pin
of the master oscillator should be biased at a voltage that
will guarantee the slave oscillator(s) ability to lock onto the
3732f
19