THEORY OF OPERATION
The AD8143 amplifiers use an architecture called active
feedback, which differs from that of conventional op amps. The
most obvious differentiating feature is the presence of two
separate pairs of differential inputs compared to a conventional
op amp’s single pair. Typically, for the active-feedback architecture,
one of these input pairs is driven by a differential input signal,
while the other is used for the feedback. This active stage in the
feedback path is where the term active feedback is derived.
The active feedback architecture offers several advantages over a
conventional op amp in several types of applications. Among
these are excellent common-mode rejection, wide input common-
mode range, and a pair of inputs that are high impedance and
completely balanced in a typical application. In addition, while
an external feedback network establishes the gain response as in
a conventional op amp, its separate path makes it entirely
independent of the signal input. This eliminates any interaction
between the feedback and input circuits, which traditionally
causes problems with CMRR in conventional differential-input
op amp circuits.
Another advantage of active feedback is the ability to change the
polarity of the gain merely by switching the differential inputs.
A high input impedance inverting amplifier can therefore be
made. Besides high input impedance, a unity-gain inverter with
the AD8143 has noise gain of unity, producing lower output
noise and higher bandwidth than op amps that have noise gain
equal to 2 for a unity-gain inverter.
AD8143
The two differential input stages of the AD8143 are each
transconductance stages that are well-matched. These stages
convert the respective differential input voltages to internal
currents. The currents are then summed and converted to a
voltage, which is buffered to drive the output. The compensation
capacitor is included in the summing circuit. When the
feedback path is closed around the part, the output drives
the feedback input to that voltage which causes the internal
currents to sum to zero. This occurs when the two differential
inputs are equal and opposite; that is, their algebraic sum is zero.
In a closed-loop application, a conventional op amp has its
differential input voltage driven to near zero under non-
transient conditions. The AD8143 generally has differential
input voltages at each of its input pairs, even under equilibrium
conditions. As a practical consideration, it is necessary to
internally limit the differential input voltage with a clamp
circuit. Thus, the input dynamic ranges are limited to about
2.5 V for the AD8143 (see Specifications section for more
detail). For this and other reasons, it is not recommended to
reverse the input and feedback stages of the AD8143, even
though some apparently normal functionality may be observed
under some conditions.
Rev. 0 | Page 17 of 24