DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADE7761ARS-REF View Datasheet(PDF) - Analog Devices

Part Name
Description
Manufacturer
ADE7761ARS-REF Datasheet PDF : 28 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
ADE7761
Table 5. F1–4 Frequency Selection
S1
S0
F1–4 (Hz)1
OSC/CLKIN2
0
0
1.72
OSC/218
0
1
3.44
OSC/217
1
0
6.86
OSC/216
1
1
13.7
OSC/215
1 Values are generated using the nominal frequency of 450 kHz.
2 F1–4 are a binary fraction of the master clock and, therefore, vary with the
internal oscillator frequency (OSC).
Note that if the on-chip reference is used, actual output
frequencies may vary from device to device due to a reference
tolerance of ±8%.
5.70× 0.66 × 0.66 × 1.72 Hz
F1 F2 Frequency =
2 × 2 ×2.52
= 0.34 Hz
CF Frequency = F1 F2 × 64 = 22.0 Hz
Frequency Output CF
As can be seen from these two example calculations, the
The pulse output calibration frequency (CF) is intended for use
maximum output frequency for ac inputs is always half of that
during calibration. The output pulse rate on CF can be up to
2048 times the pulse rate on F1 and F2. The lower the F1–4
frequency selected, the higher the CF scaling. Table 6 shows
how the two frequencies are related, depending on the states of
the logic inputs S0, S1, and SCF. Because of its relatively high
E pulse rate, the frequency at this logic output is proportional to
the instantaneous active power. As with F1 and F2, the
frequency is derived from the output of the low-pass filter after
T multiplication. However, because the output frequency is high,
this active power information is accumulated over a much
shorter time. Therefore, less averaging is carried out in the
digital-to-frequency conversion. With much less averaging of
E the active power signal, the CF output is much more responsive
to power fluctuations (see Figure 20).
L Table 6. Relationship between CF and F1, F2 Frequency
Outputs
SCF S1 S0 F1–4 (Hz)
CF Frequency Output
1
0 0 1.72
128 × F1, F2
O 0
0 0 1.72
64 × F1, F2
1
0 1 3.44
64 × F1, F2
0
0 1 3.44
32 × F1, F2
1
1 0 6.86
32 × F1, F2
S 0
1 0 6.86
16 × F1, F2
1
1 1 13.7
16 × F1, F2
0
1 1 13.7
2048 × F1, F2
B Example
In this example, if ac voltages of ±660 mV peak are applied to
V1 and V2, then the expected output frequency on CF, F1, and
O F2 is calculated as follows:
for dc input signals. Table 7 shows a complete listing of all
maximum output frequencies for ac signals.
Table 7. Maximum Output Frequency on CF, F1, and F2 for
AC Inputs
F1, F2 Maximum
SCF S1 S0 Frequency (Hz)
CF Maximum
Frequency (Hz)
CF to
F1
Ratio
1 0 0 0.34
43.52
128
0 0 0 0.34
21.76
64
1 0 1 0.68
43.52
64
0 0 1 0.68
21.76
32
1 1 0 1.36
43.52
32
0 1 0 1.36
21.76
16
1 1 1 2.72
43.52
16
0 1 1 2.72
5570
2048
FAULT DETECTION
The ADE7761 incorporates a novel fault detection scheme that
warns of fault conditions and allows the ADE7761 to continue
accurate billing during a fault event. The ADE7761 does this by
continuously monitoring both the phase and neutral (return)
currents. A fault is indicated when these currents differ by more
than 6.25%. However, even during a fault, the output pulse rate
on F1 and F2 is generated using the larger of the two currents.
Because the ADE7761 looks for a difference between the voltage
signals on V1A and V1B, it is important that both current trans-
ducers be closely matched.
On power-up, the output pulse rate of the ADE7761 is pro-
portional to the product of the voltage signals on V1A and
Channel 2. If there is a difference of greater than 6.25% between
V1A and V1B on power-up, the fault indicator (FAULT) becomes
F1–4 = 1.7 Hz, SCF = S1 = S0 = 0
active after about 1 s. In addition, if V1B is greater than V1A, the
ADE7761 selects V1B as the input. The fault detection is
V1rms = rms of 660 mV peak ac = 0.66/√2 V
automatically disabled when the voltage signal on Channel 1 is
V2rms = rms of 660 mV peak ac = 0.66/√2 V
less than 0.3% of the full-scale input range. This eliminates false
detection of a fault due to noise at light loads.
VREF = 2.5 V (nominal reference value)
Rev. A | Page 19 of 28

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]