DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADP3309ART-3.3-RL View Datasheet(PDF) - Analog Devices

Part Name
Description
Manufacturer
ADP3309ART-3.3-RL
ADI
Analog Devices 
ADP3309ART-3.3-RL Datasheet PDF : 12 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
THEORY OF OPERATION
The ADP3309 anyCAP LDO uses a single control loop for
regulation and reference functions. The output voltage is sensed
by a resistive voltage divider consisting of R1 and R2, which is
varied to provide the available output voltage option. Feedback
is taken from this network by way of a series diode (D1) and a
second resistor divider (R3 and R4) to the input of an amplifier.
INPUT Q 1
NONINVERTING
WIDEBAND
DRIVER
OUTPUT
COMPENSATION
CAPACITOR
ATTENUATION
(VBANDGAP /VOUT)
R1
PTAT
gm
VOS
R3 D1
(a)
R4
PTAT
CURRENT
R2
RLOAD
CLOAD
ADP3309
GND
Figure 22. Functional Block Diagram
A very high gain error amplifier is used to control this loop. The
amplifier is constructed in such a way that at equilibrium, it
produces a large, temperature proportional input offset voltage
that is repeatable and very well controlled. The temperature
proportional offset voltage is combined with the complementary
diode voltage to form a virtual band gap voltage, implicit in the
network, although it never appears explicitly in the circuit.
Ultimately, this patented design makes it possible to control the
loop with only one amplifier. This technique also improves the
noise characteristics of the amplifier by providing more
flexibility on the trade-off of noise sources that leads to a low
noise design.
The R1, R2 divider is chosen in the same ratio as the band gap
voltage to the output voltage. Although the R1, R2 resistor
divider is loaded by the diode (D1), and a second divider
consisting of R3 and R4, the values can be chosen to produce a
temperature stable output.
ADP3309
The patented amplifier controls a new and unique noninverting
driver that drives the pass transistor (Q1). The use of this
special noninverting driver enables the frequency compensation
to include the load capacitor in a pole splitting arrangement to
achieve reduced sensitivity to the value, type, and ESR of the
load capacitance.
Most LDOs place very strict requirements on the range of ESR
values for the output capacitor because they are difficult to
stabilize due to the uncertainty of load capacitance and
resistance. Moreover, the ESR value, required to keep
conventional LDOs stable, changes depending on load and
temperature. These ESR limitations make designing with LDOs
more difficult because of their unclear specifications and
extreme variations over temperature.
This is no longer true with the ADP3309 anyCAP LDO. It can
be used with virtually any capacitor, with no constraint on the
minimum ESR. This innovative design allows the circuit to be
stable with just a small 0.47 μF capacitor on the output.
Additional advantages of the design scheme include superior
line noise rejection and very high regulator gain, which leads to
excellent line, and load regulation. An impressive ±2.2%
accuracy is guaranteed over line, load, and temperature.
Additional features of the circuit include current limit and
thermal shutdown. Compared to the standard solutions that
give warning after the output has lost regulation, the ADP3309
provides improved system performance by enabling the ERR
pin to give warning before the device loses regulation.
As the chip’s temperature rises above 165°C, the circuit activates
a soft thermal shutdown, indicated by a signal low on the ERR
pin, to reduce the current to a safe level.
Rev. C | Page 9 of 12

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]