DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

PIC16F1503T-I View Datasheet(PDF) - Microchip Technology

Part Name
Description
Manufacturer
PIC16F1503T-I
Microchip
Microchip Technology 
PIC16F1503T-I Datasheet PDF : 352 Pages
First Prev 181 182 183 184 185 186 187 188 189 190 Next Last
PIC16(L)F1503
21.6 I2C MASTER MODE
Master mode is enabled by setting and clearing the
appropriate SSPM bits in the SSPxCON1 register and
by setting the SSPEN bit. In Master mode, the SDAx
and SCKx pins must be configured as inputs. The
MSSP peripheral hardware will override the output
driver TRIS controls when necessary to drive the pins
low.
Master mode of operation is supported by interrupt
generation on the detection of the Start and Stop con-
ditions. The Stop (P) and Start (S) bits are cleared from
a Reset or when the MSSPx module is disabled. Con-
trol of the I2C bus may be taken when the P bit is set,
or the bus is idle.
In Firmware Controlled Master mode, user code
conducts all I2C bus operations based on Start and
Stop bit condition detection. Start and Stop condition
detection is the only active circuitry in this mode. All
other communication is done by the user software
directly manipulating the SDAx and SCLx lines.
The following events will cause the SSPx Interrupt Flag
bit, SSPxIF, to be set (SSPx interrupt, if enabled):
• Start condition detected
• Stop condition detected
• Data transfer byte transmitted/received
• Acknowledge transmitted/received
• Repeated Start generated
Note 1: The MSSPx module, when configured in
I2C Master mode, does not allow queue-
ing of events. For instance, the user is not
allowed to initiate a Start condition and
immediately write the SSPxBUF register
to initiate transmission before the Start
condition is complete. In this case, the
SSPxBUF will not be written to and the
WCOL bit will be set, indicating that a
write to the SSPxBUF did not occur
2: When in Master mode, Start/Stop detec-
tion is masked and an interrupt is gener-
ated when the SEN/PEN bit is cleared and
the generation is complete.
21.6.1 I2C MASTER MODE OPERATION
The master device generates all of the serial clock
pulses and the Start and Stop conditions. A transfer is
ended with a Stop condition or with a Repeated Start
condition. Since the Repeated Start condition is also
the beginning of the next serial transfer, the I2C bus will
not be released.
In Master Transmitter mode, serial data is output
through SDAx, while SCLx outputs the serial clock. The
first byte transmitted contains the slave address of the
receiving device (seven bits) and the Read/Write (R/W)
bit. In this case, the R/W bit will be logic ‘0’. Serial data
is transmitted eight bits at a time. After each byte is
transmitted, an Acknowledge bit is received. Start and
Stop conditions are output to indicate the beginning
and the end of a serial transfer.
In Master Receive mode, the first byte transmitted
contains the slave address of the transmitting device
(seven bits) and the R/W bit. In this case, the R/W bit
will be logic ‘1’. Thus, the first byte transmitted is a 7-bit
slave address followed by a ‘1’ to indicate the receive
bit. Serial data is received via SDAx, while SCLx out-
puts the serial clock. Serial data is received eight bits at
a time. After each byte is received, an Acknowledge bit
is transmitted. Start and Stop conditions indicate the
beginning and end of transmission.
A Baud Rate Generator is used to set the clock
frequency output on SCLx. See Section21.7 “Baud
Rate Generator” for more detail.
DS40001607D-page 186
2011-2015 Microchip Technology Inc.

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]