DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

DSPIC33FJ16GS402-I/ML View Datasheet(PDF) - Microchip Technology

Part Name
Description
Manufacturer
DSPIC33FJ16GS402-I/ML
Microchip
Microchip Technology 
DSPIC33FJ16GS402-I/ML Datasheet PDF : 346 Pages
First Prev 261 262 263 264 265 266 267 268 269 270 Next Last
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04
21.2 On-Chip Voltage Regulator
The
dsPIC33FJ06GS101/X02
and
dsPIC33FJ16GSX02/X04 devices power their core digital
logic at a nominal 2.5V. This can create a conflict for
designs that are required to operate at a higher typical
voltage, such as 3.3V. To simplify system design, all
devices in the dsPIC33FJ06GS101/X02 and
dsPIC33FJ16GSX02/X04 families incorporate an on-chip
regulator that allows the device to run its core logic from
VDD.
The regulator provides power to the core from the other
VDD pins. When the regulator is enabled, a low-ESR
(less than 5 ohms) capacitor (such as tantalum or
ceramic) must be connected to the VCAP/VDDCORE pin
(Figure 21-1). This helps to maintain the stability of the
regulator. The recommended value for the filter
capacitor is provided in Table 24-13 located in
Section 24.1 “DC Characteristics”.
Note:
It is important for the low-ESR capacitor to
be placed as close as possible to the
VCAP/VDDCORE pin.
On a POR, it takes approximately 20 μs for the on-chip
voltage regulator to generate an output voltage. During
this time, designated as TSTARTUP, code execution is
disabled. TSTARTUP is applied every time the device
resumes operation after any power-down.
FIGURE 21-1:
CONNECTIONS FOR THE
ON-CHIP VOLTAGE
REGULATOR(1,2)
3.3V
dsPIC33F
CEFC
VDD
VCAP/VDDCORE
VSS
Note 1:
2:
These are typical operating voltages. Refer to
Table 24-13 located in Section 24.1 “DC
Characteristics” for the full operating
ranges of VDD and VCAP/VDDCORE.
It is important for the low-ESR capacitor to
be placed as close as possible to the
VCAP/VDDCORE pin.
21.3 BOR: Brown-Out Reset
The Brown-out Reset (BOR) module is based on an
internal voltage reference circuit that monitors the
regulated supply voltage VCAP/VDDCORE. The main
purpose of the BOR module is to generate a device
Reset when a brown-out condition occurs. Brown-out
conditions are generally caused by glitches on the AC
mains (for example, missing portions of the AC cycle
waveform due to bad power transmission lines, or
voltage sags due to excessive current draw when a
large inductive load is turned on).
A BOR generates a Reset pulse, which resets the
device. The BOR selects the clock source, based on
the device Configuration bit values (FNOSC<2:0> and
POSCMD<1:0>).
If an oscillator mode is selected, the BOR activates the
Oscillator Start-up Timer (OST). The system clock is
held until OST expires. If the PLL is used, the clock is
held until the LOCK bit (OSCCON<5>) is ‘1’.
Concurrently, the PWRT time-out (TPWRT) is applied
before the internal Reset is released. If TPWRT = 0 and
a crystal oscillator is being used, then a nominal delay
of TFSCM = 100 is applied. The total delay in this case
is TFSCM.
The BOR Status bit (RCON<1>) is set to indicate that a
BOR has occurred. The BOR circuit continues to
operate while in Sleep or Idle modes and resets the
device should VDD fall below the BOR threshold
voltage.
DS70318D-page 266
Preliminary
© 2009 Microchip Technology Inc.

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]