S25FL128S, S25FL256S
4.2.3
Input Signal Overshoot
During DC conditions, input or I/O signals should remain equal to or between VSS and VIO. During voltage transitions, inputs or I/Os
may overshoot VSS to –2.0V or overshoot to VIO +2.0V, for periods up to 20 ns.
Figure 4.1 Maximum Negative Overshoot Waveform
20 ns
20 ns
VIL
- 2.0V
20 ns
VIO + 2.0V
Figure 4.2 Maximum Positive Overshoot Waveform
20 ns
VIH
20 ns
20 ns
4.3 Power-Up and Power-Down
The device must not be selected at power-up or power-down (that is, CS# must follow the voltage applied on VCC) until VCC reaches
the correct value as follows:
VCC (min) at power-up, and then for a further delay of tPU
VSS at power-down
A simple pull-up resistor (generally of the order of 100 k) on Chip Select (CS#) can usually be used to insure safe and proper
power-up and power-down.
The device ignores all instructions until a time delay of tPU has elapsed after the moment that VCC rises above the minimum VCC
threshold. See Figure 4.3. However, correct operation of the device is not guaranteed if VCC returns below VCC (min) during tPU. No
command should be sent to the device until the end of tPU.
After power-up (tPU), the device is in Standby mode (not Deep Power Down mode), draws CMOS standby current (ISB), and the
WEL bit is reset.
During power-down or voltage drops below VCC (cut-off), the voltage must drop below VCC (low) for a period of tPD for the part to
initialize correctly on power-up. See Figure 4.4. If during a voltage drop the VCC stays above VCC (cut-off) the part will stay initialized
and will work correctly when VCC is again above VCC (min). In the event Power-on Reset (POR) did not complete correctly after
power up, the assertion of the RESET# signal or receiving a software reset command (RESET) will restart the POR process.
Normal precautions must be taken for supply rail decoupling to stabilize the VCC supply at the device. Each device in a system
should have the VCC rail decoupled by a suitable capacitor close to the package supply connection (this capacitor is generally of the
order of 0.1 µf).
Document Number: 001-98283 Rev. *I
Page 26 of 144