DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

DSPIC30F4013AT-20E/ML-ES View Datasheet(PDF) - Microchip Technology

Part Name
Description
Manufacturer
DSPIC30F4013AT-20E/ML-ES
Microchip
Microchip Technology 
DSPIC30F4013AT-20E/ML-ES Datasheet PDF : 220 Pages
First Prev 91 92 93 94 95 96 97 98 99 100 Next Last
14.7 Interrupts
The I2C module generates two interrupt flags, MI2CIF
(I2C Master Interrupt Flag) and SI2CIF (I2C Slave Inter-
rupt Flag). The MI2CIF interrupt flag is activated on
completion of a master message event. The SI2CIF
interrupt flag is activated on detection of a message
directed to the slave.
14.8 Slope Control
The I2C standard requires slope control on the SDA
and SCL signals for Fast mode (400 kHz). The control
bit, DISSLW, enables the user to disable slew rate
control if desired. It is necessary to disable the slew
rate control for 1 MHz mode.
14.9 IPMI Support
The control bit, IPMIEN, enables the module to support
Intelligent Peripheral Management Interface (IPMI).
When this bit is set, the module accepts and acts upon
all addresses.
14.10 General Call Address Support
The general call address can address all devices.
When this address is used, all devices should, in
theory, respond with an acknowledgement.
The general call address is one of eight addresses
reserved for specific purposes by the I2C protocol. It
consists of all ‘0’s with R_W = 0.
The general call address is recognized when the Gen-
eral Call Enable (GCEN) bit is set (I2CCON<7> = 1).
Following a Start bit detection, 8 bits are shifted into
I2CRSR and the address is compared with I2CADD,
and is also compared with the general call address
which is fixed in hardware.
If a general call address match occurs, the I2CRSR is
transferred to the I2CRCV after the eighth clock, the
RBF flag is set and on the falling edge of the ninth bit
(ACK bit), the master event interrupt flag (MI2CIF) is
set.
When the interrupt is serviced, the source for the
interrupt can be checked by reading the contents of the
I2CRCV to determine if the address was device-spe-
cific or a general call address.
dsPIC30F3014/4013
14.11 I2C Master Support
As a master device, six operations are supported:
• Assert a Start condition on SDA and SCL.
• Assert a Restart condition on SDA and SCL.
• Write to the I2CTRN register initiating
transmission of data/address.
• Generate a Stop condition on SDA and SCL.
• Configure the I2C port to receive data.
• Generate an ACK condition at the end of a
received byte of data.
14.12 I2C Master Operation
The master device generates all of the serial clock
pulses and the Start and Stop conditions. A transfer is
ended with a Stop condition or with a Repeated Start
condition. Since the Repeated Start condition is also
the beginning of the next serial transfer, the I2C bus is
not released.
In Master Transmitter mode, serial data is output
through SDA, while SCL outputs the serial clock. The
first byte transmitted contains the slave address of the
receiving device (7 bits) and the data direction bit. In
this case, the data direction bit (R_W) is logic ‘0’. Serial
data is transmitted 8 bits at a time. After each byte is
transmitted, an ACK bit is received. Start and Stop
conditions are output to indicate the beginning and the
end of a serial transfer.
In Master Receive mode, the first byte transmitted
contains the slave address of the transmitting device
(7 bits) and the data direction bit. In this case, the data
direction bit (R_W) is logic ‘1’. Thus, the first byte trans-
mitted is a 7-bit slave address, followed by a ‘1’ to indi-
cate receive bit. Serial data is received via SDA while
SCL outputs the serial clock. Serial data is received
8 bits at a time. After each byte is received, an ACK bit
is transmitted. Start and Stop conditions indicate the
beginning and end of transmission.
14.12.1 I2C MASTER TRANSMISSION
Transmission of a data byte, a 7-bit address or the
second half of a 10-bit address, is accomplished by
simply writing a value to I2CTRN register. The user
should only write to I2CTRN when the module is in a
WAIT state. This action sets the Buffer Full Flag (TBF)
and allow the Baud Rate Generator to begin counting
and start the next transmission. Each bit of address/
data is shifted out onto the SDA pin after the falling
edge of SCL is asserted. The Transmit Status Flag,
TRSTAT (I2CSTAT<14>), indicates that a master
transmit is in progress.
© 2007 Microchip Technology Inc.
DS70138E-page 89

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]