ADP1878/ADP1879
Data Sheet
power dissipation across the internal LDO. Equation 3 shows the
power dissipation calculations for the integrated drivers and for
the internal LDO. Table 9 lists the thermal impedance for the
ADP1878/ADP1879, which are available in a 14-lead LFCSP_WD.
Table 9. Thermal Impedance for 14-Lead LFCSP_WD
Package
Thermal Impedance
14-Lead LFCSP_WD θJA
4-Layer Board
30°C/W
Figure 85 specifies the maximum allowable ambient temperature
that can surround the ADP1878/ADP1879 IC for a specified
high input voltage (VIN). Figure 85 illustrates the temperature
derating conditions for each available switching frequency for
low, typical, and high output setpoints for the 14-lead LFCSP_WD
package. All temperature derating criteria are based on a
maximum IC junction temperature of 125°C.
130
120
110
100
90
5.5
300kHz
600kHz
1MHz
VOUT = 0.8V
VOUT = 1.8V
VOUT = HIGH SETPOINT
7.0 8.5 10.0 11.5 13.0 14.5 16.0 17.5 19.0
VIN (V)
Figure 85. Ambient Temperature vs. VIN,
4-Layer Evaluation Board, CIN = 4.3 nF (High-/Low-Side MOSFET)
The maximum junction temperature allowed for the ADP1878/
ADP1879 IC is 125°C. This means that the sum of the ambient
temperature (TA) and the rise in package temperature (TR), which is
caused by the thermal impedance of the package and the internal
power dissipation, should not exceed 125°C, as dictated by the
following expression:
TJ = TR × TA
(1)
where:
TJ is the maximum junction temperature.
TR is the rise in package temperature due to the power
dissipated from within.
TA is the ambient temperature.
The rise in package temperature is directly proportional to its
thermal impedance characteristics. The following equation
represents this proportionality relationship:
TR = θJA × PDR(LOSS)
(2)
where:
θJA is the thermal resistance of the package from the junction to
the outside surface of the die, where it meets the surrounding air.
PDR(LOSS) is the overall power dissipated by the IC.
The bulk of the power dissipated is due to the gate capacitance of
the external MOSFETs and current running through the on-board
LDO. The power loss equations for the MOSFET drivers and
internal low dropout regulator (see the MOSFET Driver Loss
section and the Efficiency Consideration section) are:
PDR(LOSS) = [VDR × (fSWCupperFETVDR + IBIAS)] +
[VREG × (fSWClowerFET VREG + IBIAS)]
(3)
where:
CupperFET is the input gate capacitance of the high-side MOSFET.
ClowerFET is the input gate capacitance of the low-side MOSFET.
IBIAS is the dc current (2 mA) flowing into the high- and low-
side drivers.
VDR is the driver bias voltage (the low input voltage (VREG) minus
the rectifier drop (see Figure 83)).
VREG is the LDO output/bias voltage.
PDISS(LDO) = PDR(LOSS) + (VIN – VREG) × (fSW × CTOTAL ×
VREG + IBIAS
(4)
where PDISS(LDO) is the power dissipated through the pass device
in the LDO block across VIN and VREG.
PDR(LOSS) is the MOSFET driver loss.
VIN is the high voltage input.
VREG is the LDO output voltage and bias voltage.
CTOTAL is the CGD + CGS of the external MOSFET.
IBIAS is the dc input bias current.
For example, if the external MOSFET characteristics are θJA
(14-lead LFCSP_WD) = 30°C/W, fSW = 300 kHz, IBIAS = 2 mA,
CupperFET = 3.3 nF, ClowerFET = 3.3 nF, VDR = 4.62 V, and VREG = 5.0 V,
then the power loss is
PDR(LOSS) = [VDR × (f V SWCupperFET DR + IBIAS)] +
[VREG × (f V SWClowerFET REG + IBIAS)]
= (4.62 × (300 × 103 × 3.3 × 10−9 × 4.62 + 0.002)) +
(5.0 × (300 × 103 × 3.3 × 10−9 × 5.0 + 0.002))
= 57.12 mW
PDISS(LDO) = (VIN – VREG) × (fSW × CTOTAL × VREG + IBIAS) =
(13 V – 5 V) × (300 × 103 × 3.3 × 10−9 × 5 + 0.002)
= 55.6 mW
P = P + P DISS(TOTAL)
DISS(LDO)
DR(LOSS)
= 77.13 mW + 55.6 mW
= 132.73 mW
Rev. A | Page 28 of 40