ST10F269Z2Qx
21.4.4 - Prescaler Operation
When pins P0.15-13 (P0H.7-5) equal ’001’ during
reset, the CPU clock is derived from the internal
oscillator (input clock signal) by a 2:1 prescaler.
The frequency of fCPU is half the frequency of
fXTAL and the high and low time of fCPU (i.e. the
duration of an individual TCL) is defined by the
period of the input clock fXTAL.
The timings listed in the AC Characteristics that
refer to TCL therefore can be calculated using the
period of fXTAL for any TCL.
Note that if the bit OWDDIS in SYSCON register
is cleared, the PLL runs on its free-running
frequency and delivers the clock signal for the
Oscillator Watchdog. If bit OWDDIS is set, then
the PLL is switched off.
21.4.5 - Direct Drive
When pins P0.15-13 (P0H.7-5) equal ’011’ during
reset the on-chip phase locked loop is disabled
and the CPU clock is directly driven from the
internal oscillator with the input clock signal.
The frequency of fCPU directly follows the
frequency of fXTAL so the high and low time of
fCPU (i.e. the duration of an individual TCL) is
defined by the duty cycle of the input clock fXTAL.
Therefore, the timings given in this chapter refer
to the minimum TCL. This minimum value can be
calculated by the following formula:
TCLmin= 1 ⁄ fXTALlxlDCmin
DC= duty cycle
For two consecutive TCLs, the deviation caused
by the duty cycle of fXTAL is compensated, so the
duration of 2TCL is always 1/fXTAL.
The minimum value TCLmin has to be used only
once for timings that require an odd number of
TCLs (1,3,...). Timings that require an even
number of TCLs (2,4,...) may use the formula:
2TCL= 1 ⁄ fXTAL
Note:
The address float timings in Multiplexed
bus mode (t11 and t45) use the maximum
duration of TCL (TCLmax = 1/fXTAL x
DCmax) instead of TCLmin.
If the bit OWDDIS in SYSCON register is
cleared, the PLL runs on its free-running
frequency and delivers the clock signal for
the Oscillator Watchdog. If bit OWDDIS is
set, then the PLL is switched off.
21.4.6 - Oscillator Watchdog (OWD)
An on-chip watchdog oscillator is implemented in
the ST10F269Z2Qx. This feature is used for
safety operation with external crystal oscillator
(using direct drive mode with or without
prescaler). This watchdog oscillator operates as
following:
The reset default configuration enables the
watchdog oscillator. It can be disabled by setting
the OWDDIS (bit 4) of SYSCON register.
When the OWD is enabled, the PLL runs at its
free-running frequency, and it increments the
watchdog counter. The PLL free-running
frequency is between 2 and 10MHz. On each
transition of external clock, the watchdog counter
is cleared. If an external clock failure occurs, then
the watchdog counter overflows (after 16 PLL
clock cycles).
The CPU clock signal will be switched to the PLL
free-running clock signal, and the oscillator
watchdog Interrupt Request (XP3INT) is flagged.
The CPU clock will not switch back to the external
clock even if a valid external clock exits on XTAL1
pin. Only a hardware reset can switch the CPU
clock source back to direct clock input.
When the OWD is disabled, the CPU clock is
always external oscillator clock and the PLL is
switched off to decrease consumption supply
current.
21.4.7 - Phase Locked Loop
For all other combinations of pins P0.15-13
(P0H.7-5) during reset the on-chip phase locked
loop is enabled and it provides the CPU clock (see
Table 34). The PLL multiplies the input frequency
by the factor F which is selected via the
combination of pins P0.15-13 (fCPU = fXTAL x F).
With every F’th transition of fXTAL the PLL circuit
synchronizes the CPU clock to the input clock.
This synchronization is done smoothly, so the
CPU clock frequency does not change abruptly.
Due to this adaptation to the input clock the
frequency of fCPU is constantly adjusted so it is
locked to fXTAL. The slight variation causes a jitter
of fCPU which also effects the duration of
individual TCLs.
The timings listed in the AC Characteristics that
refer to TCLs therefore must be calculated using
the minimum TCL that is possible under the
respective circumstances.
138/161