Data Sheet
When the ADE7880 analyzes a phase, the following metering
quantities are computed:
Fundamental phase current rms: I1
Fundamental phase voltage rms: V1
RMS of up to three harmonics of phase current:
Ix, Iy, Iz, x,y,z=2, 3,…, N
RMS of up to three harmonics of phase voltage:
Vx, Vy, Vz, x,y,z=2, 3,…, N
Fundamental phase active power
P1 = V1I1cos(φ1 − γ1)
Fundamental phase reactive power
Q1 = V1I1sin(φ1 − γ1)
Fundamental phase apparent power
S1 = V1I1
Power factor of the fundamental
pf1
sgnQ1
P1
S1
Active power of up to three harmonics:
Px = VxIxcos(φx – γx), x=2, 3,…, N
Py = VyIycos(φy – γy), y=2, 3,…, N
Pz = VzIzcos(φz – γz), z=2, 3,…, N
Reactive power of up to three harmonics:
Qx = VxIxsin(φx – γx), x=2, 3,…, N
Qy = VyIysin(φy – γy), y=2, 3,…, N
Qz = VzIzsin(φz – γz), z=2, 3,…, N
Apparent power of up to three harmonics:
Sx = VxIx, x = 2, 3, …, N
Sy = VyIy, y = 2 , 3, …, N
Sz = VzIz, z = 2, 3, …, N
Power factor of up to three harmonics:
pf x
sgnQx
Px
Sx
,
x
=
2,
3,…,
N
pfy
sgn Qy
Py
Sy
, y = 2, 3,…, N
ADE7880
pf z
sgnQz
Pz
Sz
, z = 2, 3,…, N
Total harmonic distortion of the phase current
THDI
I 2 I12
I1
Total harmonic distortion of the phase voltage
THDV
V 2 V12
V1
Harmonic distortion of up to three harmonics on the phase
current
HDI x
Ix
I1
, x = 2, 3,…, N
HDI y
Iy
I1
, y = 2, 3,…, N
HDI z
Iz
I1
, z = 2, 3,…, N
Harmonic distortion of up to three harmonics on the phase
voltage:
HDVx
Vx
V1
, x = 2, 3,…, N
HDVy
Vy
V1
, y = 2, 3,…, N
HDVz
Vz
V1
, z = 2, 3,…, N
Rev. A | Page 57 of 104