Data Sheet
ADE7880
Table 20. Harmonic Engine Outputs When Phase A, Phase B, or Phase C is Analyzed and the Registers Where the Values are Stored
Quantity
RMS of the Fundamental Component
Definition
V1, I1
ADE7880 Register
FVRMS, FIRMS
RMS of a Harmonic Component
Active Power of the Fundamental Component
Active Power of a Harmonic Component
Reactive Power of the Fundamental Component
Reactive Power of a Harmonic Component
Apparent Power of the Fundamental Component
Apparent Power of a Harmonic Component
Power Factor of the Fundamental Component
Power Factor of a Harmonic Component
Vx, Ix, x = 2, 3,…, N
Vy, Iy, y = 2, 3,…, N
Vz , Iz, z = 2, 3,…, N
P1 = V1I1cos(φ1 − γ1)
Px = VxIxcos(φx – γx), x = 2, 3,…, N
Py = VyIycos(φy – γy), y = 2, 3,…, N
Pz = VzIzcos(φz – γz), z = 2, 3,…, N
Q1 = V1I1sin(φ1 − γ1)
Qx = VxIxsin(φ1 − γ1), x = 2, 3,…, N
Qy = VyIysin(φy – γy), y = 2, 3,…, N
Qz = VzIzsin(φz – γz), z = 2, 3,…, N
S1 = V1I1
Sx = VxIx, x = 2, 3, …, N
Sy = VyIy, y = 2, 3, …, N
Sz = VzIz, z = 2, 3, …, N
pf1
=
sgn(Q1 ) ×
P1
S1
pf x
=
sgn(Qx
)
×
Px
Sx
, x = 2, 3,…, N
HXVRMS, HXIRMS
HYVRMS, HYIRMS
HZVRMS, HZIRMS
FWATT
HXWATT
HYWATT
HZWATT
FVAR
HXVAR
HYVAR
HZVAR
FVA
HXVA
HYVA
HZVA
FPF
HXPF
( ) pfy = sgn Qy
× Py
Sy
, y = 2, 3,…, N
HYPF
Total Harmonic Distortion
Harmonic Distortion of a Harmonic Component
pf z
=
sgn(Qz
)
×
Pz
Sz
, z = 2, 3,…, N
(THD)V =
V 2 − V12
V1
(THD)I =
I 2 − I12
I1
HDVx
= Vx
V1
, HDIx
=
Ix
I1
, x = 2, 3,…, N
HDV y
= Vy
V1
, HDI y
=
Iy
I1
,y = 2, 3,…, N
HDVz
= Vz
V1
,
HDI z
=
Iz
I1
,z = 2, 3,…, N
HZPF
VTHD
ITHD
HXVHD, HXIHD
HYVHD, HYIHD
HZVHD, HZIHD
Rev. A | Page 59 of 104