C8051F060/1/2/3/4/5/6/7
5.5. ADC0 Programmable Window Detector
The ADC0 Programmable Window Detector continuously compares the ADC0 output to user-programmed
limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an
interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response
times. The window detector interrupt flag (AD0WINT in ADC0CN) can also be used in polled mode. The
high and low bytes of the reference words are loaded into the ADC0 Greater-Than and ADC0 Less-Than
registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). The Window Detector can be used in single-
ended or differential mode. In signle-ended mode, the Window Detector compares the ADC0GTx and
ADC0LTx registers to the output of ADC0. In differential mode, the combined output of ADC0 and ADC1
(contained in the ADC0 data registers) is used for the comparison. Reference comparisons are shown
starting on page 71. Notice that the window detector flag can be asserted when the measured data is
inside or outside the user-programmed limits, depending on the programming of the ADC0GTx and
ADC0LTx registers.
Figure 5.24. ADC0GTH: ADC0 Greater-Than Data High Byte Register
R/W
R/W
R/W
R/W
R/W
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bits 7-0: High byte of ADC0 Greater-Than Data Word.
R/W
R/W
Reset Value
11111111
Bit1
Bit0
SFR Address: 0xC5
SFR Page: 0
Figure 5.25. ADC0GTL: ADC0 Greater-Than Data Low Byte Register
R/W
R/W
R/W
R/W
R/W
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bits 7-0: Low byte of ADC0 Greater-Than Data Word.
R/W
R/W
Reset Value
11111111
Bit1
Bit0
SFR Address: 0xC4
SFR Page: 0
Rev. 1.2
69