ORCA Series 2 FPGAs
Data Sheet
November 2006
Estimating Power Dissipation (continued)
OR2C06A Clock Power
+ (0.022 mW/MHz – PFU) (# PFUs)
+ (0.006 mW/MHz – SMEM_PFU)
(# SMEM_PFUs)] fCLK
P = [0.63 mW/MHz
+ (0.25 mW/MHz – Branch) (# Branches)
For a quick estimate, the worst-case (typical circuit)
OR2C26A clock power ≈ 17.8 mW/MHz.
+ (0.022 mW/MHz – PFU) (# PFUs)
+ (0.006 mW/MHz – SMEM_PFU)
(# SMEM_PFUs)] fCLK
S For a quick estimate, the worst-case (typical circuit)
OR2C06A clock power ≈ 5.3 mW/MHz.
OR2C08A Clock Power
E P = [0.65 mW/MHz
+ (0.29 mW/MHz – Branch) (# Branches)
IC + (0.022 mW/MHz – PFU) (# PFUs)
+ (0.006 mW/MHz – SMEM_PFU)
D (# SMEM_PFUs)] fCLK
For a quick estimate, the worst-case (typical circuit)
V E OR2C08A clock power ≈ 6.6 mW/MHz.
OR2C10A Clock Power
E U P = [0.66 mW/MHz
+ (0.32 mW/MHz – Branch) (# Branches)
D + (0.022 mW/MHz – PFU) (# PFUs)
IN + (0.006 mW/MHz – SMEM_PFU)
(# SMEM_PFUs)] fCLK
T For a quick estimate, the worst-case (typical circuit)
T OR2C10A clock power ≈ 8.6 mW/MHz.
C OR2C12A Clock Power
N P = [0.68 mW/MHz
+ (0.35 mW/MHz – Branch) (# Branches)
E + (0.022 mW/MHz – PFU) (# PFUs)
O + (0.006 mW/MHz – SMEM_PFU)
L (# SMEM_PFUs)] fCLK
E C For a quick estimate, the worst-case (typical circuit)
OR2C12A clock power ≈ 10.5 mW/MHz.
S IS OR2C15A Clock Power
P = [0.69 mW/MHz
+ (0.38 mW/MHz – Branch) (# Branches)
D + (0.022 mW/MHz – PFU) (# PFUs)
OR2C40A Clock Power
P = [0.77 mW/MHz
+ (0.53 mW/MHz – Branch) (# Branches)
+ (0.022 mW/MHz – PFU) (# PFUs)
+ (0.006 mW/MHz – SMEM_PFU)
(# SMEM_PFUs)] fCLK
For a quick estimate, the worst-case (typical circuit)
OR2C40A clock power ≈ 26.6 mW/MHz.
The power dissipated in a PIC is the sum of the power
dissipated in the four I/Os in the PIC. This consists of
power dissipated by inputs and ac power dissipated by
outputs. The power dissipated in each I/O depends on
whether it is configured as an input, output, or input/
output. If an I/O is operating as an output, then there is
a power dissipation component for PIN, as well as
POUT. This is because the output feeds back to the
input.
The power dissipated by a TTL input buffer is estimated
as:
PTTL = 2.2 mW + 0.17 mW/MHz
The power dissipated by an input buffer is estimated
as:
PCMOS = 0.17 mW/MHz
The ac power dissipation from an output or bidirec-
tional is estimated by the following:
POUT = (CL + 8.8 pF) x VDD2 x F Watts
where the unit for CL is farads, and the unit for F is Hz.
As an example of estimating power dissipation,
suppose that a fully utilized OR2C15A has an average
of three outputs for each of the 400 PFUs, that all
20 clock branches are used, that 150 of the 400 PFUs
have FFs clocked at 40 MHz (16 of which are operating
in a synchronous memory mode), and that the PFU
outputs have an average activity factor of 20%.
+ (0.006 mW/MHz – SMEM_PFU)
Twenty TTL-configured inputs, 20 CMOS-configured
(# SMEM_PFUs)] fCLK
inputs, 32 outputs driving 30 pF loads, and 16 bidirec-
For a quick estimate, the worst-case (typical circuit)
OR2C15A clock power ≈ 12.7 mW/MHz.
tional I/Os driving 50 pF loads are also generated from
the 40 MHz clock with an average activity factor of
20%. The worst-case (VDD = 5.25 V) power dissipation
OR2C26A Clock Power
is estimated as follows:
P = [0.73 mW/MHz
+ (0.44 mW/MHz – Branch) (# Branches)
PPFU = 400 x 3 (0.16 mW/MHz x 20 MHz x 20%)
= 768 mW
64
Lattice Semiconductor